
3D Reconstruction of Urban Areas

Charalambos Poullis
Cyprus University of Technology

Immersive and Creative Technologies Lab
Limassol, Cyprus

Email: charalambos@poullis.org

Suya You
University of Southern California

Computer Graphics and Immersive Technologies Lab
Los Angeles, USA

Email: suyay@graphics.usc.edu

Abstract—Virtual representations of real world areas are
increasingly being employed in a variety of different applica-
tions such as urban planning, personnel training, simulations,
etc. Despite the increasing demand for such realistic 3D
representations, it still remains a very hard and often manual
process. In this paper, we address the problem of creating
photorealistic 3D scene models for large-scale areas and present
a complete system.

The proposed system comprises of two main components:
(1) A reconstruction pipeline which employs a fully auto-
matic technique for extracting and producing high-fidelity
geometric models directly from Light Detection and Ranging
(LiDAR) data and (2) A flexible texture blending technique
for generating high-quality photorealistic textures by fusing
information from multiple optical sensor resources. The result
is a photorealistic 3D representation of large-scale areas(city-
size) of the real-world.

We have tested the proposed system extensively with many
city-size datasets which confirms the validity and robustness
of the approach. The reported results verify that the system
is a consistent work flow that allows non-expert and non-
artists to rapidly fuse aerial LiDAR and imagery to construct
photorealistic 3D scene models.

Keywords-reconstruction; large-scale; modeling; LiDAR; tex-
turing

I. INTRODUCTION

Virtual representations of real world areas are increasingly
being employed in a variety of different applications rang-
ing from computer graphics, virtual reality, games, feature
films to Geographical Information Systems(GIS). Despite
the increasing demand for such realistic 3D representations,
it still remains a very hard and often manual process -
current approaches and systems to produce the photorealistic
3D representations are still time-consuming, expensive and
labor intensive. In fact, the creation of models is still
widely viewed as a specialized art, requiring personnel with
extensive training and experience to produce useful models.

In this paper, we address the problem of creating photo-
realistic 3D scene models for large-scale areas and present
a complete modeling system for the rapid and realistic
production of city models from multiple sensor data. The
proposed system comprises of two main components: (1)
A reconstruction pipeline which employs a fully automatic
technique for extracting and producing high-fidelity geo-
metric models directly from Light Detection and Ranging

(LiDAR) data and (2) A flexible texture blending technique
for generating high-quality photorealistic textures by fusing
information from multiple optical sensor resources. The
result is a photorealistic 3D representation of large-scale
areas(city-size) of the real-world.

We have integrated the developed techniques to produce a
complete model system, and have tested the proposed system
extensively with many city-size datasets which confirms the
validity and robustness of the approach. The reported results
verify that the system is a consistent work flow that allows
non-expert and non-artists to rapidly fuse aerial LiDAR and
imagery to construct photorealistic 3D scene models.

The following sections will detail the developed tech-
niques and system. Section II summarizes existing knowl-
edge in the areas of geometry modeling and texture gen-
eration. Section III presents the overview structure of the
system. Section IV and V introduce the techniques of auto-
matic geometry modeling and texture composition. Section
VI presents the experimental results, and finally the Section
VII concludes the presented work.

II. RELATED WORK

Below is a brief overview of the existing knowledge in
the areas of 3D model reconstruction and texture generation
methodologies.
A. 3D Model Reconstruction

The proposed system in [1] can deal with uncalibrated
image sequences acquired with a hand-held camera. Based
on tracked or matched features the relations between mul-
tiple views are computed. From this both the structure of
the scene and the motion of the camera are retrieved. The
ambiguity on the reconstruction is restricted from projective
to metric through self-calibration.

Nevatia et al [2], propose a user-assisted system for the
extraction of 3D polygonal models of buildings from aerial
images. Low level image features are initially used to build
high level descriptions of the objects. Using a hypothesize
and verify paradigm they are able to extract impressive
models from a small set of aerial images. The authors later
extended their work in [3] to automatically estimate camera
pose parameters from two or three vanishing points and three
3D to 2D correspondences.



In [6] a ground-based LiDAR scanner is used to record a
rather complex ancient structure of significant cultural her-
itage importance. Multiple scans were aligned and merged
together using a semi-automatic process and a complete
3D model was created of the outdoor structure. The re-
constructed model is shown to contain high-level of details
however the complexity of the geometry limits this approach
to the reconstruction of single buildings rather than large-
scale.

In a different approach, [4] proposed an interactive system
which can reconstruct buildings using ground imagery and
a minimal set of geometric primitives. More recently [5] ex-
tended this system to incorporate pointcloud support as part
of the reconstruction however the required user interaction
increases considerably for large-scale areas. Moreover, the
user interaction depends on the desired level of detail of
the reconstructed models which may vary according to the
application.

Another ground-based approach is presented in [8] where
multiple range images are integrated by minimizing an en-
ergy functional consisting of a total variation regularization
force and an L1 data fidelity term. Similarly, the resulting
geometry, although impressive, is too “heavy” for most
applications, as is also the case with the proposed method in
[9] which combines unregistered range and image sensing
for reconstructing photorealistic 3D models.

A similar ground-based approach is presented in [7]
where a two-stage process is employed in order to quickly
fuse multiple stereo depth maps. The results are impressive
especially for a real-time system, however the resulting
geometry is too complex and requires further processing in
order to make it usable in another application.

A more recent primitive-based system [10] presented a
method for the rapid reconstruction of photorealistic large-
scale virtual environments using a minimal set of three
primitives. In this case the authors sacrifice full automation
to achieve high-fidelity and high-quality models.

In [11] the authors present a method for reconstructing
large-scale 3D city models by merging ground-based and
airborne-based LiDAR data. The elevation measurements
are used to recover the geometry of the roofs. Facade
details are then incorporated by the high resolution capture
of a ground based system which has the advantage of
also capturing texture information. The textures aid in the
creation of a realistic appearance of the model. However,
at the cost of having detailed facades they neglect to deal
with the complexities and wide variations of the buildings’
roof types. The same authors later extended their method to
incorporate texture information from oblique aerial images.
Although they combine multiple aerial images to determine
the model’s textures, their method is restricted to traditional
texture mapping rather than combining all available texture
information to generate a composite texture. Therefore,
a significant color difference between images will cause

visible and non-smooth transitions between neighbouring
polygons assigned to different texture images.

B. Texture Generation

A method for creating renders from novel view-points is
presented in [12], where densely regularly sampled images
are blended together. The image acquisition process is
simple and reproducible for relatively small objects, however
the complexity of the capturing process greatly increases for
large objects and especially in cases where the object exists
in an outdoor environment where the lighting conditions
cannot be controlled as in a lab environment. In addition, the
proposed method does not involve the use or generation of
geometric information thus, it limits its use to applications
for visualization purposes only.

The method introduced in [4] uses a small set of images
to interactively reconstruct a 3D model of the scene using
a set of parameterized primitives. A view-dependent texture
mapping method is then employed for the computation of
the texture maps of the model. Although this technique is
sufficient to create realistic renderings of the scene from
novel view-points its computation is still too expensive
for real-time applications, like games or virtual reality and
the novel viewpoints are constrained to be close to the
initial camera positions. In addition, view-dependent texture
mapping works seamlessly in cases where the images are
taken at regularly sampled intervals which is not generally
true in the context of large-scale areas since some images
may come from satellites and aerial images thus having a
wide baseline between them.

In [13] they order geometry into optimized visibility
layers for each photograph. The layers are subsequently used
to create standard 2D image-editing layers which become the
input to a layered projective texture rendering algorithm.
However, this approach chooses the best image for each
surface rather than combining the contributions of all the
images to minimize information loss.

The authors in [14] estimate a set of blending trans-
formations that minimizes the overall color discrepancy in
overlapping regions in order to deal with the unnatural
color texture fusion due to variations in lighting and camera
settings.

A different approach is proposed in [15] to seamlessly
map a patchwork of texture images onto an arbitrary 3D
model. By specifying a set of correspondences between the
model and any number of texture images their system can
create a texture atlas.

A slightly different approach for texture generation and
extraction is proposed in [16]. Given a texture sample in
the form of an image, they create a similar texture over an
irregular mesh hierarchy that has been placed on a given
surface, however this approach cannot capture the ”actual”
appearance of the models.

The authors in [17] propose a method for computing the



blending weights based on a local and global component.
This results in smooth transitions in the target image in the
presence of depth discontinuities.

Another line of research uses video resources for the
dynamic texturing of large-scale environments. Neumann
et al [18], incorporate the dynamic input of multiple video
cameras and generate projective textures for the models.

III. SYSTEM OVERVIEW

The system overview consists of two modules: Building
Generation and Texture Composition as shown in Fig. 1(a).

Initially, in the Building Generation module, 3D models
representing the scene are generated from the unstructured
input data in two steps:

1) Preprocessing. The unstructured data is subdivided
into space and memory manageable parts which are
converted into our internal format representation.

2) Building Extraction. An automatic segmentation
groups neighbouring points of similar geometric prop-
erties into regions representing the buildings’ roofs.
The regions are then used to derive a set of noisy 2D
roof boundaries which are refined by a novel boundary
refinement method based on Gaussian Mixture Mod-
els. Finally, 3D models are extruded from the refined
2D roof boundaries.

Next, in the Texture Composition module, the 3D models
of the scene and imagery capturing their real-world ap-
pearance are combined together to create composite texture
atlases for the realistic appearance of the 3D models in two
steps:

1) Image Registration. A set of correspondences are
interactively specified between the 3D geometry rep-
resenting the scene and the imagery capturing the
appearance of the same geometry. A non-linear op-
timization is then employed to recover the camera
poses.

2) Texture Rendering. The geometry is subdivided into
smaller primitives. A non-linear blending function
which ensures a smooth and seamless transition be-
tween the different images, is then used to compute
the composite texture maps. Finally, the composite
textures are packed into compact texture atlases.

IV. BUILDING GENERATION

A. Preprocessing

In this step, the data is subdivided into smaller,
space/memory manageable parts and are represented by a
set of 2D XYZ maps. The XYZ maps reduce the building
extraction problem from a 3D to a 2D, therefore allowing
all subsequent processing to be performed entirely in 2D
and allowing the use of fast image processing techniques
such as hole filling to be performed, which recovers any
missing information from the local neighbourhood. This

(a) (b)

Figure 1. (a) System Overview. (b) Texture Composition Overview

greatly reduces the computational complexity and improves
the computational time of the system.

Fig. 2(a) shows the unstructured LiDAR data for a down-
town area of Atlanta. The corresponding resampled, hole-
filled 2D XYZ map for the same area is shown in Fig. 2(b).
The R, G, B channels of the image correspond to the X, Y,
Z axes respectively.

(a) Unstructured LiDAR data. (b) Resampled 2D XYZ map.

Figure 2. Preprocessing. The unstructured pointcloud is resampled into
manageable components represented by 2D XYZ maps.

B. Building Extraction

The automatic extraction of buildings and the automatic
creation of the 3D models is performed in two steps: Region
segmentation and Boundary Extraction and Refinement.

1) Region Segmentation: An automatic segmentation is
performed on the resampled 2D XYZ maps to group neigh-
bouring points of similar geometric properties into disjoint
regions. Initially, a 1-D Gaussian distribution Gd and a 3-
D Gaussian distribution G ~N is created for each region Ri
to describe the distributions of the depth and normals of
all the points P ∈ Ri, respectively. The segmentation then
begins by initializing a region R0 with a starting point
P(x,y) ∈ M in the XYZ map M . Candidate points in the
8-neighbourhood system are considered and are added iff
the likelihood, of the candidate point’s depth dp and normal
~np, belonging to the Gaussian distributions Gd and G ~N



describing the region being processed, is above an adaptive
threshold as given by equations 1 and 2,

Pr(dp) ≥ Pr(τ × µGd
) (1)

Pr(~np) ≥ Pr(τ × ~µG ~N
) (2)

where µGd
and µG ~N

is the mean depth and the mean normal
of the two distributions respectively, and τ = 0.5 is a
parameter which controls how similar the candidate point’s
properties have to be to be added to the region. Successful
candidate points are added to the region and the Gaussian
distributions describing that region are updated to reflect
the change. This process is iteratively performed and a new
region is initialized each time a region has considered all its
neighbouring points and no change has occurred. The result
is a set of disjoint regions shown with different colors in
Fig. 3(a).

(a) (b)

Figure 3. (a) Color-coded segmentation result for downtown Atlanta. (b)
The extracted roof boundaries after the refinement process using GMMs.
The blue points indicate a boundary point and the yellow lines are edges
connecting those points.

2) Boundary Extraction and Refinement: Next, the roof
boundaries are extracted by computing the contour enclosing
each segmented region using Suzuki’s algorithm [19]. The
result is a closed-contour boundary corresponding to each
segmented region, which consists of a dense number of
points and may contain artifacts primarily due to the noise
in the original data.

Boundaries which are spatially close(within one pixel) to
each other are grouped into the same element, and further
processing is performed on the entire set of boundaries
contained in each element. The reason for processing neigh-
bouring roof boundaries together is because they are more
likely to have similar orientations(or perpendicular) which
helps with the determination of the principal orientations of
the buildings. In the example of Fig. 3(b) the boundaries are
grouped into 47 elements based on a one pixel proximity.
Examples of elements are shown in Fig. 4.

A novel boundary refinement process is then applied
in order to remove the artifacts and linearize the dense
boundaries. A Gaussian Mixture Model(GMM) is used to

classify the boundary points into different orientations. A
GMM is a superposition of K Gaussian densities of the
form,

p(x) =

K∑
k=1

πkN(x|µk,Σk) (3)

where each Gaussian density (e.g. component of the mixture)
N(x|µk,Σk) has its own mean µk and covariance Σk.
The parameters πk are the mixing coefficients for which
πk ≥ 0 and

∑K
k=1 πk = 1. The calculation of the parameters

π = {π1, ..., πk}, µ = {µ1, ..., µk} and Σ = {Σ1, ...,Σk}
is performed using an expectation maximization(EM) algo-
rithm which maximizes the log of the likelihood function
given by,

ln p(X|π, µ,Σ) =

N∑
n=1

ln{
K∑
k=1

πkN(xn|µk,Σk} (4)

where X = {x1, ..., xN} are the data samples.
As mentioned previously a boundary Bi consists of a set

of dense points. A three dimensional feature descriptor FPj

is used to represent each boundary point PBi
j and is defined

as,
FPj

= (~Tx, ~Ty, κe) (5)

where Tx, Ty is the local tangent orientation and κ is the
local extrinsic curvature which is expressed in terms of the
discrete first(’) and second(”) derivatives as,

κe =
x

′
y

′′ − y′
x

′′

(x′2 + y′2)3/2
(6)

In contrast to existing work, we do not assume that
buildings always have four sides or parallel sides, thus
we do not use GMMs of fixed order K, but instead we
compute K using a Minimum Description Length(MDL)
estimator criterion proposed by [20]. Hence, for each set of
boundaries in an element we first determine the best number
of components the GMM should have and then perform the
fitting using the EM algorithm to minimize equation 4.

Fig. 4 shows the classification of the boundary points
for three different elements. The color of each boundary
point Pj indicates the component of the GMM of that
element which maximizes the probability of the point’s
feature descriptor FPj . As it can be seen, the primary
advantage of using a GMM for the classification of the
boundary points, is that it can better separate the outlier
points produced by noise and accumulating errors from the
resampling process, thus removing the otherwise significant
bias during the boundary refinement. Moreover, the use of
MDL to determine the number of components K of the
GMM model allows the application of this technique to
linear as well as non-linear shapes.

Finally, the classification of the points is used to cluster se-
quential boundary points into groups which are then reduced
to single lines using a least-square line fitting algorithm.



(a) Element 1. (b) Element 2. (c) Element 3.

Figure 4. Boundary grouping into elements and point classification using
GMMs. The colors indicate the component of the GMM that maximizes
the probability of the feature descriptor FPj

of a point.

The refined and linearized boundaries are shown in Fig.
3(b). A significant reduction to the number of points and an
improvement in the linear structure of the roof boundaries
is clearly evident, however small artifacts still remain. This
is primarily caused by the similar nature of the artifacts
with the buildings’ features, which makes it very difficult
to discriminate between real features and features due to
noise.

Finally, a plane fitting is performed to all the points en-
closed by the refined boundaries. Each plane corresponding
to a roof boundary is extruded in the vertical direction to
form a water-tight 3D polygonal model. The reconstructed
models for the downtown and surrounding area of a U.S
city, covering a 16km2 area, is shown in Fig. 5.

Figure 5. Reconstructed polygonal 3D models for downtown Baltimore
and surrounding areas (16km2).

V. TEXTURE COMPOSITION

The texture composition is performed in two steps: the
Image Registration and Texture Rendering, shown in Fig.
1(b).

A. Image Registration

The input to this module is a set of 3D models represent-
ing the scene and a set of images capturing the appearance
of the same scene. The output is the recovered camera poses
corresponding to the images, as shown in Fig. 1(b).

A plethora of techniques have already been proposed for
solving the problem of camera pose recovery. Firstly, we
define the pinhole-camera model used to describe each cam-
era. The extrinsic and intrinsic parameters of each camera
are specified by the camera matrix C in equation 7,

C =

 α −αcot(θ) u0
0 β

sin(θ) v0
0 0 1


︸ ︷︷ ︸

intrinsic

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

extrinsic

(7)
where α = kfx, β = kfy , (fx, fy) is the focal length on

the x and y axis respectively, θ is the skew angle, u0, v0
is the principal point on the x and y axis respectively and
r1−3, tx−z determine the camera’s rotation and translation
relative to the world.

Given a minimum of three 2D to 3D correspondences
specified interactively by the operator the camera extrinsic
and intrinsic parameters can be accurately estimated. The
camera pose estimation is performed using a non-linear
Levenberg-Marquardt optimization [21], [22] which mini-
mizes the error function ECk

for each camera Ck,

ECk
=

1

n

n∑
i=0

√
(Iix − P ix)2 + (Iiy − P iy)2) (8)

where Ii is the ith image point, P i is the projection of
the ith 3D world point and n is the number of 2D to 3D
correspondences.

An obvious problem of using an optimization to recover
the camera extrinsic and intrinsic parameters is that it can
get stuck in local minima and fail to converge to the global
minimum solution. For example, varying the focal length
(fx, fy) has the same effect as varying the translation tz .
Similarly, varying the principal point u0, v0 has the same
effect as varying the translation tx or ty . In order to signifi-
cantly decrease the likelihood of this problem occuring, we
optimize the camera extrinsic and intrinsic parameters in an
iterative, alternate process.

Firstly, the operator provides an initial estimate of the
camera parameters. In the majority of the cases, we have
found that just pointing the camera towards the object
suffices and the optimization converges to a global mini-
mum. Secondly, we perform the optimization in an iterative
process. The extrinsic parameters are optimized first until
the optimization converges followed by an optimization of
the intrinsic parameters. This process is repeated until the
optimization converges to a minimum solution.

B. Texture Rendering

The Texture Rendering module takes as input a set of
scene 3D objects, the recovered camera poses and their
associated images, and returns the resulting 3D objects along
with a set of texture atlases. The generation of the resulting
textured models involves two steps: Image-based Object



Subdivision and Composite Texture Rendering, as shown in
Fig. 1(b).

Initially, the scene objects are decomposed into their
corresponding faces which are then subdivided based on
their image visibility. A bounding volume hierarchy is used
as an efficient data structure for the representation of the
subdivided objects in the scene. Next, the optimal texture
map resolution is determined for each face and the composite
texture maps are rendered. Finally, the composite texture
maps are packed into one or more texture atlases.

1) Image-based Object Subdivision: In order to deter-
mine the optimal resolution of the texture map for each face,
the face’s vertices are projected into all the images using the
recovered camera poses. The largest projected area for the
face is defined as the optimal resolution. However, in some
cases not all the projected points fall within the bounds of the
image frame which can lead to problems when computing
the texture map resolution. The problem is demonstrated by
the example in Fig. 6(a) where the scene consists of three
rectangles and two cameras having a white frame and a
black frame respectively as shown in the insets. Fig. 6(b) and
Fig. 6(c) show the projections of the objects into the image
frame of the left and right camera respectively. The projected
points which fall outside the bounds of the image frame
can be heavily distorted due to the perspective nature of the
projection and therefore cannot be used for the computation
of the projected area.

To overcome this problem we perform an image-based
visibility clipping where the 2D projections of the objects
are clipped in image space and then backprojected to the
3D space where the objects are subdivided. This process
is performed for all the cameras and all the objects in the
scene and it guarantees that all faces in the scene are entirely
visible in all the cameras. Fig. 6(d) and Fig. 6(e) shows
the projections of the objects after the image-based object
subdivision. Similarly, Fig. 6(f) shows the subdivided 3D
objects produced by this process.

2) Composite Texture Rendering: The generation of the
composite texture maps starts with the preparation of the
scene for raytracing. Irregular faces are subdivided into the
simple primitives used by the raytracer e.g. triangles and
quadrilaterals. A bounding volume hierarchy is then used as
the internal data structure for the efficient representation of
the data.

Next, a texture map is raytraced for each face. In order to
minimize the information loss we exploit all the information
available from all cameras. This is achieved by considering
the color contribution of each image in which the face is
visible. The integration of these contributions is performed
by a blending function which ensures the smooth transition
between multiple cameras and is expressed as a non-linear
function of multiple parameters given by,

fblend = ‖αW1 × βW2 × γW3 × δW4 × εW5‖ (9)

where α, β, γ, δ, ε are the importance factors of the five
weights respectively and W1..5 are the normalized weights
for the following parameters:

1) W1 is the weight of the resolution of the current image
and is given by, W1 =

(Iwidth×Iheight)
(Imaxwidth×Imaxheight)

. Images
with higher resolution are given a higher weight than
images with low resolution.

2) W2 is the weight of the distance of the camera
from the point on the face and is given by, W2 =
‖Tcamera − P‖2, where Tcamera is the camera trans-
lation and P is the 3D position of the point. An image
from a camera which is far away from the point e.g.
an image from a satellite, is given a lesser weight than
an image from ground or aerial camera.

3) W3 is the weight of the distance of the projected point
from the closest image border. This ensures the smooth
transition (i.e. feathering) between multiple images at
the image borders.

4) W4 is the weight of the distance of the projected point
from the principal point of the image. This is in order
to account for the radial lens distortion which increases
as a non-linear function of the distance to the principal
point.

5) W5 is the weight of the dot product between the
camera’s viewing direction and the face’s normal. A
camera which views a face at a grazing angle is given
a lesser weight than a front-view camera.

Hence, the resulting color of a point P on a face visible by
n cameras is given by,

CP =

n∑
i=0

f iblend × IiPproj
(10)

where f iblend is the combined weight computed by the
blending function for the i’th camera, and IiPproj

is the color
at the projected point Pproj of the point P , in the image
frame of the i’th camera.

Fig. 6 shows a render of the test scene introduced in Fig.
6(a) from a novel viewpoint using the composite texture
maps. The integration and smooth transition between the
black and white images is evident by the gray areas which
are visible in both cameras. Non-visible faces for which no
information is available are assigned a default green color.
Similarly, backfacing faces are assigned a black color.

The composite texture maps produced for each face in
the scene are of various sizes and shapes. To reduce the
number of texture maps required for a particular scene, we
pack the textures into larger collections of texture atlases. We
employ a simple texture packing technique which first sorts
the texture maps based on their width and height, and then
copies each map sequentially in an atlas of a user-defined
size. Additionally, a set of texture coordinates are computed
and assigned to each face in the atlas. A variety of more
advanced techniques have already been proposed [23], [24]



(a) Scene setup. Geometry before
the image-based subdivision.

(b) Projection into left camera be-
fore subdivision.

(c) Projection into right camera be-
fore subdivision.

(d) Projection into left camera after
subdivision.

(e) Projection into right camera af-
ter subdivision.

(f) Geometry after the image-based
subdivision.

(g) Novel viewpoint render for the
test scene in (a).

(h) The composite texture atlas for
(g).

Figure 6. (a)-(f) Image-based object subdivision. (g)-(h) Texture composition result: 3D models and the composite texture atlas. The green color in (g)
indicates non-visible faces for which no information is available.The blending of the black and white images results in the gray shades of the texture.

for efficiently packing textures into atlases and can be used
instead. The result is a standalone 3D model with a set of
associated texture atlases as shown in the example in Fig.
7.

Figure 7. A textured 3D model for a university campus. The green points
indicate the interactively marked correspondences between the geometry
and the imagery, which were used for the recovery of the camera pose.

VI. EXPERIMENTAL RESULTS

Fig. 5 shows the result of the 3D reconstruction of
a downtown and surrounding areas of a U.S. city. The
generation of the 3D models was performed automatically
in 11 hours and consisted of 36 XYZ maps of size 1Kx1K.
In this example, the reconstructed models include all the
data captured by the LiDAR scanner e.g. ground, roads,
overhanging highways, bridges, trees, etc. A quantitative
comparison between the original data and the resulting
geometry indicates a reduction of 97.5% in the number of

polygons(from 2088968 to 51442) and a reduction of 93.8%
in the file size(measured in Mb of an OBJ ASCII file, from
151.4 to 9.3). Fig. 8 shows the textured 3D models using
aerial oblique imagery.

Figure 8. A render of the textured 3D model for an area in downtown
Baltimore.

VII. CONCLUSION

We have presented a complete and robust system for
rapidly creating realistic virtual cities from LiDAR and im-
agery sensor data. Two significant components are developed
for the system: a fully automatic technique for extraction
of polygonal 3D models from LiDAR data, and a flexible
texture blending technique for generation of photorealistic
textures from multiple imagery data. Firstly, regions seg-
mented by an automatic segmentation, are used to extract an



initial set of roof boundaries which are linearized and refined
by a novel refinement process based on a Gaussian Mixture
model classification and makes no particular assumptions
about the shape of the boundaries, thus can be applied
to linear as well as non-linear boundaries. The result is
boundaries consisting of a reduced set of points which are
used in combination with the elevation information of the
enclosed points to generate light-weight, water-tight, 3D
polygonal models representing the scene.

Secondly, imagery registered interactively to the geometry
is used to recover the camera poses and texture atlases
are generated by integrating multiple information together,
therefore minimizing information loss. Moreover, the pro-
posed non-linear blending function significantly reduces the
appearance of artifacts in the composite textures. The texture
composition process is independent of the 3D models, thus
it can be applied in different contexts. The result is a
standalone 3D textured model. Finally, we have presented
our experimental results which verify the validity of our
approach.

ACKNOWLEDGMENTS

We thank the Airborn1 Inc for providing us with the USC
campus LiDAR data. We acknowledge the members and Prof.
Ulrich Neumann in the Computer Graphics and Immersive and
Technologies (CGIT) lab of USC. We also thank the reviewers for
their valuable comments and suggestions.

REFERENCES

[1] M. Pollefeys, L. J. V. Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch, “Visual modeling with a
hand-held camera,” International Journal of Computer Vision,
vol. 59, no. 3, pp. 207–232, 2004.

[2] R. Nevatia and K. E. Price, “Automatic and interactive mod-
eling of buildings in urban environments from aerial images,”
in ICIP (3), 2002, pp. 525–528.

[3] S. C. Lee, S. K. Jung, and R. Nevatia, “Automatic pose
estimation of complex 3D building models,” in WACV. IEEE
Computer Society, 2002, pp. 148–152.

[4] P. E. Debevec, “Modeling and rendering architecture from
photographs,” Ph.D. dissertation, University of California,
Berkeley, 1996.

[5] C. Poullis, A. Gardner, and P. Debevec, “Photogrammetric
modeling and image-based rendering for rapid virtual envi-
ronment creation,” Proceedings of ASC2004, 2004.

[6] P. Debevec, C. Tchou, A. Gardner, T. Hawkins, C. Poullis,
J. Stumpfel, A. Jones, N. Yun, P. Einarsson, T. Lundgren,
M. Fajardo, and P. Martinez, “Estimating surface reflectance
properties of a complex scene under captured natural illumi-
nation,” USC, ICT, Technical Report, 2004.

[7] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J. M.
Frahm, R. G. Yang, D. Nister, and M. Pollefeys, “Real-time
visibility-based fusion of depth maps,” in ICCV, 2007, pp.
1–8.

[8] C. Zach, T. Pock, and H. Bischof, “A globally optimal
algorithm for robust TV-L1 range image integration,” in
ICCV, 2007, pp. 1–8.

[9] I. Stamos and P. K. Allen, “Geometry and texture recovery
of scenes of large scale,” CVIU, vol. 88, no. 2, pp. 94–118,
2002.

[10] C. Poullis, S. You, and U. Neumann, “Rapid creation of large-
scale photorealistic virtual environments,” in VR. IEEE,
2008, pp. 153–160.

[11] C. Früh and A. Zakhor, “Constructing 3D city models by
merging ground-based and airborne views,” in CVPR. IEEE
Computer Society, 2003, pp. 562–569.

[12] M. Levoy and P. Hanrahan, “Light Field Rendering,” in ACM
SIGGRAPH ’96 Proceedings, 1996, pp. 31–42.

[13] A. R. Martinez and G. Drettakis, “View-dependent layered
projective texture maps,” in Pacific Conference on Computer
Graphics and Applications. IEEE Computer Society, 2003,
pp. 492–496.

[14] N. Bannai, A. Agathos, and R. Fisher, “Fusing multiple color
images for texturing models,” The University of Edinburgh,
Tech. Rep. EDIINFRR0230, Jul. 2004.

[15] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y.
Shum, “Texturemontage,” ACM Trans. Graph., vol. 24, no. 3,
pp. 1148–1155, 2005.

[16] G. Turk, “Texture synthesis on surfaces,” in SIGGRAPH,
2001, pp. 347–354.

[17] R. Raskar and K.-L. Low, “Blending multiple views,” in
Pacific Conference on Computer Graphics and Applications.
IEEE Computer Society, 2002, pp. 145–155.

[18] U. Neumann, S. You, J. Hu, B. Jiang, and J. W. Lee,
“Augmented virtual environments (AVE): Dynamic fusion of
imagery and 3D models,” in VR. IEEE Computer Society,
2003, p. 61.

[19] S. Suzuki and K. Abe, “Topological structural analysis of
digitized binary images by border following,” CVGIP, vol. 30,
pp. 32–46, 1985.

[20] J. Rissanen, “A universal prior for integers and estimation by
minimum description length,” Ann. of Statist., vol. 11, no. 2,
pp. 416–431, 1983.

[21] K. Levenberg, “A method for the solution of certain non-
linear probelms in least squares,” Quart. Appl. Math., vol. 2,
pp. 164–168, 1944.

[22] D. W. Marquardt, “An algorithm for least-squares estimation
of non-linear parameters,” Journal of the Society of Industrial
and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[23] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares
conformal maps for automatic texture atlas generation,” ACM
TOG, vol. 21, no. 3, pp. 362–371, Jul. 2002.

[24] GRAPHITE, http://www.loria.fr/ levy/Graphite/index.html,
2003.


