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Abstract—Convolutional neural networks have been shown
to have a very high accuracy when applied to certain
visual tasks and in particular semantic segmentation. In this
paper we address the problem of semantic segmentation
of buildings from remote sensor imagery. We present ICT-
Net: a novel network with the underlying architecture of a
fully convolutional network, infused with feature re-calibrated
Dense blocks at each layer. Uniquely, the proposed network
combines the localization accuracy and use of context of the
U-Net network architecture, the compact internal represen-
tations and reduced feature redundancy of the Dense blocks,
and the dynamic channel-wise feature re-weighting of the
Squeeze-and-Excitation(SE) blocks. The proposed network
has been tested on INRIA’s benchmark dataset and is shown
to outperform all other state-of-the-art by more than 1.5%
on the Jaccard index.

Furthermore, as the building classification is typically the
first step of the reconstruction process, in the latter part of
the paper we investigate the relationship of the classification
accuracy to the reconstruction accuracy. A comparative quan-
titative analysis of reconstruction accuracies corresponding to
different classification accuracies confirms the strong corre-
lation between the two. We present the results which show
a consistent and considerable reduction in the reconstruction
accuracy. The source code and supplemental material is pub-
licly available at http://www.theICTlab.org/lp/2019ICTNet/.
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I. INTRODUCTION

Reconstructing large-scale urban areas is an inherently
complex problem which involves a number of vision tasks.
Typically, the first step is classification where the objective
is to label each pixel into an urban feature type e.g., build-
ing, road, tree, car, ground, vegetation, etc. Next, the pixel-
level labels are used to cluster the pixels into contiguous
groups corresponding to instances of the urban features
they represent. Finally, the reconstruction is performed
on each cluster. A reconstruction algorithm is applied
on each cluster according to the urban feature type the
cluster corresponds to. In the case of clusters corresponding
to buildings, a boundary refinement process is typically
performed prior to extruding the building facades.

The objectives and contributions of this paper are
twofold. Firstly, we address the problem of the classifica-
tion of buildings in remote sensor imagery. We investigate

a number of state-of-the-art deep neural network architec-
tures and present a comparative study of the results along
with a reasoned justification on the design decisions for the
proposed network named ICT-Net: a novel network with
the underlying architecture of a fully convolutional network
infused with Dense feature re-calibrated blocks at each
layer. We demonstrate that this combination of components
leads to superior performance. The proposed network is
ranked first at an international benchmark competition
organized by INRIA with more than 1.5% difference in
terms of performance from the second best and other
ensemble networks.

Secondly, we address the problem of reconstruction of
the classified buildings and in particular study the relation-
ship between the classification accuracy and reconstruction
accuracy. We perform a comparative quantitative analysis
on the reconstructions corresponding to classifications of
different accuracies and report the results. Due to the lack
of depth information, reconstructing 3D models is not
feasible therefore the accuracy of the border localization
is used as proxy for the evaluation since it is tightly
coupled to the reconstruction accuracy i.e. buildings are
extruded using their boundaries. As anticipated there is a
strong correlation between the classification accuracy and
the accuracy of the reconstruction however the analysis has
shown that there is a consistent and considerable decrease
in the reconstruction accuracy in terms of the per-pixel and
per-building Jaccard indices. To the best of our knowledge
this is the first time a quantitative analysis is performed
in order to establish how the classification accuracy relates
to the accuracy of the reconstruction as determined by the
accuracy of the border localization.
Paper organization: The paper is organized as follows:
Section II presents an overview of state-of-the-art in the
area of classification of urban features in satellite images
using deep neural networks. In Section III we summarize
the work reported in the paper. The proposed neural
network ICT-Net is explained in Section IV including a
reasoned justification of the design decisions, and details on
the training and testing of the network. Section V presents
a quantitative analysis of the reconstruction accuracies re-
sulting from different classification accuracies, and Section
VI concludes the work and discusses future directions.

http://www.theICTlab.org/lp/2019ICTNet/


II. RELATED WORK

Over the years object recognition has become one of
the most addressed vision challenges and as a result a
plethora of work has already been proposed. Initially the
goal was on image classification where the entire image
was classified according to the single object it contained;
with some of the most important work in this area being
[15], [26], [27]. More recently, the objective has shifted
towards the semantic object segmentation or semantic
labeling where multiple objects contained in a single image
are labeled according to their class at the pixel level. Some
of the most important work in this area is the work in [16],
[1], [23]. Recent techniques using deep neural networks
have demonstrated excellent results. Below we provide a
brief overview of the state-of-the-art related to the area
of semantic labeling with a particular focus on remote
sensor imagery. A comprehensive review of neural network
architectures for semantic segmentation can be found in [4].

Typical semantic segmentation architectures comprise of
a down-sampling path responsible for feature extraction
and an up-sampling path to restore the resolution of the
semantic labels. Skip connections between the two paths
help to have a smooth gradient back propagation and fast
training of the network. The U-Net [23] architecture was
able to achieve end-to-end semantic labeling with high
accuracy in the field of medical image segmentation. Since
then the U-Net [23] architecture has been extensively used
and adapted to many other domains especially labeling of
buildings from aerial imagery as in [14], [6], [11].

At the same time, deeper networks [27] have demon-
strated the capacity to extract better features from images.
Skip connections have been shown [7] to play a critical role
in the training of very deep networks as they facilitate very
good gradient propagation. There has been a lot of work
on the pattern of skip connections with a very promising
pattern known as Dense blocks proposed in [10] for the
problem of image classification. In a Dense block every
layer is connected to every other layer in a feed forward
fashion. This provides implicit deep supervision and fea-
ture reuse which in turn improves the feature extraction
power without making it difficult to train the network. The
Tiramisu network architecture proposed in [13] extended
the use of Dense blocks for semantic segmentation and
was able to outperform state-of-the-art on two benchmark
data sets: Gatech and CamVid.

Most deep neural networks for object recognition con-
sider all extracted features at each layer to be of equal im-
portance. This was until the method proposed in [8] showed
that feature re-calibration i.e. weighing of the features, can
be used effectively to model inter-dependencies between
channels and produce even better performance with little
computational overhead. Along a similar direction, in [24]
the authors have shown that feature re-calibration combined
with well known FCN networks perform well for medical
image segmentation.

With respect to urban reconstruction, the extraction of ur-

ban geospatial features such as buildings from remote sen-
sor imagery has also been an area of research interest for a
very long time [25], [28], [5]. Automatic reconstruction of
3D models from the extracted features is extremely useful
for many applications ranging from urban and community
planning, development and architectural design, training of
emergency response personnel, military personnel, etc. In
[21] the authors propose a novel, robust, automatic seg-
mentation technique based on the statistical analysis of the
geometric properties of the data as well as an efficient and
automatic modeling pipeline for the reconstruction of large-
scale areas containing several thousands of buildings. With
the recent advances in deep neural network architectures
the pipeline has been upgraded to feature extraction using
a semantic labeling CNN followed by clustering the points
based on their label, and specialized processing for each
of the labels of geospatial objects as proposed in [3].

Recently there has been a lot of interest for semantic
labeling of buildings [18], [11], [14] fueled by the release
of very large datasets like INRIA Aerial Image Labeling
dataset [17], and SpaceNet where a corpus of commercial
satellite imagery with labeled training data was made
publicly available for use in machine learning research. In
[11] the authors use a variant of the aforementioned U-Net
network architectures replacing the VGG11 [26] encoder
with a more powerful activated Batch Normalized [2]
WideResnet-38 [30] in the context of instance segmentation
of buildings for DeepGlobe-CVPR 2018 building detection
sub-challenge, and were able to get very good results.

In this work, we propose ICT-Net: a novel network
architecture that combines the strengths of deep neural net-
work architectures (UNet) and building blocks (DenseNet
block, SE block) which when applied to the problem
of semantic labeling of buildings is proven to achieve
better classification accuracy than state-of-the-art on the
INRIA Aerial Image Labeling dataset. As of writing this
manuscript the proposed network is top ranked on the
competitions’ leaderboard with more than 1.5% difference
from the second best entry.

III. SYSTEM OVERVIEW
Figure 1 summarizes the pipeline followed in the paper.

Firstly, an orthorectified RGB image is fed forward into
the neural network to produce a binary (building/non-
building) classification map. Next, the binary classification
map becomes the input to the reconstruction process. Due
to the fact that it is extremely difficult to acquire build-
ing blueprints or CAD models for such large areas, and
depth/3D information is not available for the images of the
benchmark we posit that the building boundaries extracted
from the binary classification map and refined, can serve
as a proxy to the accuracy of the reconstruction. This
is justified since the extracted boundaries are extruded in
order to create the 3D models for the buildings. Therefore,
the building boundaries are extracted, refined, and are used
for the comparative analysis and evaluation of the accuracy
of the reconstruction.



Figure 1: The diagram summarizes the work presented in this paper. Firstly, we focus on the building classification
and propose a novel network architecture which outperforms state-of-the-art on benchmark datasets and is currently
top-ranking. Secondly, we investigate the relation between the classification accuracy and the reconstruction accuracy
and conduct a comparative quantitative analysis which shows a strong correlation but also a consistent and considerable
decrease of the reconstruction accuracy when compared to the classification accuracy.

IV. BUILDING CLASSIFICATION

In this section we describe the details of the proposed
neural network architecture including information about
the dataset, training/validation, and testing, as well as the
justification for all design decisions.

A. Dataset

The training of the network is performed using the
INRIA Aerial Image labeling dataset [17] which consists of
pixelwise labeled aerial imagery for building classification.
The dataset covers 810km2 area across 10 different cities
with spatial resolution of 30cm, and is split into two
equal sets (405Km2 each) for training and testing. The
dataset consists of 3-band orthorectified RGB images and
the training labels consist of ground truth data for two
semantic classes: building and non-building. The training
data covers parts of the cities of Austin, Chicago, Kitsap
county, western Tyrol, and Vienna. The test data covers
parts of the cities of Bellingham, Bloomington, Innsbruck,
San Francisco and Eastern Tyrol. There are 36 tiles with
resolution of 5000 × 5000 pixels for each city, each tile
covering 1500× 1500m2 area on the ground. The training
data is further divided into two sets: (1) the validation set
which comprises of the first 5 tiles of each city, and (2)
the training set which consists of the rest of the tiles as
suggested in [17]. An example image from the dataset can
be seen in Figure 1.

We have chosen the INRIA benchmark dataset over other
available options because it uniquely offers two significant
advantages. Firstly, the training and testing datasets are
from completely different cities with no overlap i.e. all
images of 5 cities (Austin, Chicago, Kitsap, Western-Tyrol,
Vienna) are provided for training, and all images of another
5 different cities (Bellingham, Bloomington, Innsbruck,
San Francisco, Eastern-Tyrol) are used for testing. Sec-
ondly,the dataset covers dissimilar urban settlements e.g.,
European, American, etc, with large variations in building
density, architecture, and overall characteristics e.g., red
shingles, flat roofs, etc. For these reasons, we have chosen
this benchmark dataset because it is ideal for assessing the
generalization capacity of the network.

B. Network Architecture

A vast number of networks has been proposed for
image classification and semantic labeling. State-of-the-
art performance is generally achieved with deep networks
however these are difficult to train due to vanishing or
exploding gradients. Many networks [7], [10], [23], [13]
have shown skip connections play an important role in
having good gradient propagation through the network. In
our work, as part of the network design process, we first
identified the requirements for the particular task at hand
i.e. semantic segmentation of buildings from remote sensor
images, and then decisions were made to address these:

• Requirement 1: An important aspect of semantic seg-
mentation of buildings is to have high localization accu-
racy and take into account as much context information
as possible. This is necessary in order to address the wide
variability in buildings typically relating to their function
e.g., shape, size, color and/or region they appear in e.g.,
density in urban/rural, etc.
Decision: To that end, the U-Net architecture [23] takes
into account spatial information and combines it with
contextual information via the direct downsampling-
upsampling links.

• Requirement 2: In order to be able to process large
chunks of data at a time it is imperative that the network
contains as few parameters as possible.
Decision: Dense blocks connect every layer to every
other layer in a feed-forward fashion. Along with good
gradient propagation they also encourage feature reuse
and reduce the number of parameters substantially as
there is no need to relearn the redundant feature maps.
At the end of every Dense block all the extracted features
accumulate creating a very diverse set of features. As a
result of this feature redundancy there is a substantial
reduction in the network parameters leading to faster
training times. This allows the processing of larger patch
(and batch) sizes (which also addresses Requirement
1) therefore allowing additional contextual information
during each feed-forward pass.

• Requirement 3: The contribution of the feature maps at
each layer to the output must depend on their importance.



Figure 2: Proposed feature recalibrated Dense block with
4 convolutional layers and a growth rate κ = 12 used by
the ICT-Net. c stands for concatenation.

Decision: Using the Squeeze-and-Excitation (SE) blocks
the dynamic channel-wise feature re-weighting mecha-
nism provides a way to upweigh important feature maps
and downweigh the rest. In [8] authors show adaptive re-
calibration of channel-wise feature responses by explic-
itly modelling inter-dependencies between channels using
squeeze and excitation block on existing architectures [7],
[27], [29] results in improved performance.

The proposed network architecture is distinct and com-
bines the strengths of the U-Net architecture, Dense blocks,
and Squeeze-and-Excitation (SE) blocks. This results is
improved prediction accuracy and it has been shown to out-
perform other state-of-the-art network architectures such
as the ones proposed in [9] which have a much higher
number of learning parameters on the INRIA benchmark
dataset. Figure 2 shows a diagram of the proposed feature
recalibrated Dense block with 4 convolutional layers and a
growth rate κ = 12 used by the ICT-Net. The proposed
network has 11 feature recalibrated dense blocks with
[4,5,7,10,12,15,12,10,7,5,4] number of convolutional layers
in each dense block.

Perhaps the closest architecture to the one proposed was
discussed in [13] which uses 103 convolutional layers. If
SE blocks are introduced at the output of every layer this
will cause a vast increase in the number of parameters
which will hinder the training. In contrast, in our work we
have chosen to include an SE block only at the end of
every Dense block in order to re-calibrate the accumulated
feature-maps of all preceding layers. Thus, the variations
in the information learned at each layer - in the form of the
features maps - are weighted by the SE block according to
their importance as determined by the loss function.

Discussion: To verify the validity of the above design
decisions we performed a comparative study involving a
number of state-of-the-art architectures and blocks. Fol-
lowing the same training procedure for all architectures
reported, and without any data augmentation the ICT-Net
was compared with U-Net [23] and Tiramisu-103 [13]. The
results on the validation dataset are shown in Table I where
it is evident that the proposed architecture outperforms both
U-Net and Tiramisu-103.

Paper Method Overall IoU (%) Overall Accuracy (%)
[23] UNet 70.86 95.51
[13] Tiramisu-103 73.91 95.71
Ours ICT-Net 75.5 96.05

Table I: Performance evaluation of SOTA architectures (U-
Net [23] and Tiramisu-103 [13]) on the validation dataset

C. Training and Validation

The network is trained on 155 tiles each with resolution
5000 × 5000 from the available training data with their
corresponding ground truth. The training is performed for
100 epochs on a single nVidiaGTX 1080Ti. We used
Tensorflow API for the development and training/testing
of the network. Due to the large size of the dataset it
requires approximately 6 hours to complete 1 epoch of
training. Every epoch was divided into 31 sub-epochs each
consisting of 5 tiles (1 from each city). Limited by GPU
memory we had to choose a small batch size of 4 to have a
comparatively larger patch size of 256×256 as we observed
context is very important for semantic labeling of buildings.

Implementation details: The network was trained
using cross-entropy loss with RMSProp Optimizer with
an initial learning rate of 0.001 and decay of 0.995 for
the first 50 epochs. After the 50th epoch the learning rate
was reduced to 0.0001 and trained for another 50 epochs.
Instead of using dropout as a regularization technique we
applied a large number of data augmentations in order to
restrict the network from overfitting to the training dataset.

Data input: Our network takes in patches of 256× 256
out of the entire tile with 50% overlap. The patches are
selected sequentially for every odd epoch and the same
number of patches is selected randomly for every even
epoch during the training. We use the alternating patch
generation strategy to restrict the network from overfitting
while still having the opportunity to learn all the features
from every tile. At testing the input patch size in increased
to 768 × 768 (the maximum that could fit in the GPU
memory) so that we are able to increase the context for
large building in every patch. During testing, the patches
are selected using 50% overlap similar to what is done
during training.

Network output: The output produced by the network
is a 1-channel gray-scale image of the same size as the in-
put image where each pixel has a probability score of being
a building in the range [0, 1]. We convert the probability
map into a binary mask by thresholding. We conducted an
empirical study on the validation dataset and have chosen
τ = 0.4 as the optimal threshold value for converting the
gray-scale image to a binary map as shown in Figure 3.
The output patches are then assembled into tiles of size
5000 × 5000 by weighted average and overlapping areas
near the edges are down-weighted. During the testing,
the standard test time augmentations are applied to each
tile and they are merged back using an average of the



Figure 3: Empirical study to determine the optimal thresh-
olding value for converting the grayscale classification map
produced by the network to a binary map. The models
shown correspond to the same network ICT-Net at different
training snapshots for which the classification accuracy (i.e.
IoU in the graph) was calculated after the thresholding at
every 0.05 intervals as shown. The optimal threshold value
is τ = 0.4.

probability scores.
Data augmentations: Based on the validation results

we used the pretrained weights and trained our network
with the following data augmentations with a probability
of 70% to be applied to every patch: random rotations in
the range [0◦, 360◦] using reflection padding, random flip,
random selection of a patch in the range of [0.75, 1.25]
of the image patch size and re-size it to original patch
size of 256. Data augmentations significantly improved the
performance of the network in terms of accuracy.

D. Evaluation - Test dataset

The INRIA dataset uses two main performance mea-
sures: Intersection over Union (Jaccard index) and Ac-
curacy. Intersection over Union (IoU) is defined as the
number of pixels labeled as buildings in both the prediction
and the reference, divided by the number of pixels labeled
as buildings in the prediction or the reference. Accuracy is
defined as the percentage of correctly classified pixels.

The measures are calculated by the organizers of the
competition and involve the classification of 5 cities for
which no images have been used for training and vali-
dation, and for which no ground truth is available to the
participants. As of writing this manuscript the proposed
architecture is ranked as the top performing in terms of both
IoU (80.32%) and accuracy (97.14%) on the competition’s
leaderboard 1. Figure 4 shows an example of a result for
a small area of an image from the test dataset (top left).
The probability image produced by the network is shown
as a heat map (bottom right) overlaid on top of the RGB
image (bottom left). The binary map resulting after the
thresholding is shown in the top right image.

1https://project.inria.fr/aerialimagelabeling/leaderboard/

Figure 4: Building Classification of Bellingham city, tile
17. Result for an image from the test dataset. Top left: A
closeup of a small area of an input image. Bottom left:
The probability image overlaid on top of the RGB image.
Bottom right: The probability image shown as a heat map.
Top right: The binary map resulting after the thresholding
of the probability image.

As previously mentioned, the proposed network is cur-
rently ranked as the top performing network with the
second best having more than 1.5% difference in terms
of the IoU. The authors in [9] provide details of the
next 4 top performing techniques on the INRIA aerial
image labeling benchmark dataset. All 4 methods are
Convolutional Neural Networks(CNNs), among which 3
of them are based on U-Net architecture. Table II shows
a quantitative comparison between the proposed network
ICT-Net and these other techniques on the test dataset as
reported by the competition organizers.

Paper Method Overall IoU Overall Accuracy
[9] Raisa 69.57 95.30
[9] ONERA 71.02 95.63
[9] NUS 72.45 95.90
[9] AMLL 72.55 95.91
[12] N/A 78.80 96.91
Ours ICT-Net 80.32 97.14

Table II: Performance evaluation of the top 5 performing
networks on the test dataset. ICT-Net outperforms all others
with more than 1.5% difference in terms of the IoU.

https://project.inria.fr/aerialimagelabeling/leaderboard/


(a) (b)

Figure 5: (a) Reconstruction vs Classification accuracy. The classification accuracy ranges from [0.6451, 0.8441] as
calculated on the validation test. The different classification accuracies correspond to the same architecture (ICT-Net)
but at different snapshots during training. The binary classification map produced at each snapshot: (i) is refined using
conditional random fields (CRF), (ii) building boundaries are extracted, (iii) building boundaries are refined using the
Douglas-Pecker algorithm, (iv) converted back to a binary classification map, and (v) compared with the ground truth.
Two metrics are used: per-pixel IoU and per-building IoU (with a threshold of 75% overlap for true positive). There is an
average decrease of 4.43% ± 1.65% (confidence level 95%) in per-pixel IoU (a) of the reconstruction accuracy; and an
average decrease of 21.7%± 4.21% (confidence level 95%) in per-building IoU (b) of the reconstruction accuracy. The
reported averages are calculated across the accuracy levels.

V. COMPARATIVE QUANTITATIVE ANALYSIS OF
RECONSTRUCTION ACCURACIES

As previously stated the objectives and contributions
of our work are two-fold. In Section IV we proposed a
novel, top ranking architecture for classifying buildings
from remote sensor imagery. This binary classification map
is typically used as a first step to the reconstruction process
since it allows the application of specialized reconstruction
algorithms according to the classified type of the pixels.
In this section we focus on the equally important aspect
of the relation between the classification accuracy and
the accuracy of the reconstruction. Since it is extremely
difficult to acquire building blueprints or CAD models for
such large areas, and no 3D/depth information is available
as part of the benchmark dataset we posit that the building
boundaries extracted from the classification binary map
can serve as a proxy to the quality of the reconstruction
since the boundaries are typically extruded in order to
create the 3D models corresponding to the buildings. More
specifically, the procedure for quantitatively evaluating the
accuracy of the reconstruction is as follows:

• Building boundaries Bg are extracted from the ground
truth provided as part of the training dataset.

• The RGB image corresponding to the ground truth above
is used as input to the ICT-Net. The binary classification
map Cb resulting from feeding forward the RGB image
classifies pixels into buildings and non-buildings.

• The binary classification map Cb is refined Crefined
b

using a CRF-based technique where an energy function
is minimized via graph-cut optimization for finding an
optimal labeling fp for every pixel p such that fp → l,
where l is the new label. The data term of the energy

function of a pixel p with label lpi
is defined as,

Ed =

{
10, if f(pi) 6= lpi

0, otherwise
(1)

The smoothness term of the energy function of two
neighbouring pixels p1 and p2 with labels lp1 and lp2

respectively is defined as,

Es =

{
20, if lp1 == lp2and f(p1) 6= f(p2)

0, otherwise
(2)

The values of 10 and 20 in the equations were selected
such that smoothness is favored over the observed data.

• Building boundaries Bb are extracted from the refined
classification map Crefined

b . A simplification process
i.e. Douglas-Pecker approximation with a tolerance of
τ = 0.5, is applied to the boundaries. This simplification
process is a step applied to the building boundaries prior
to extruding the 3D model if 3D/depth information is
available [22], [19], [20].

• The simplified boundaries Bapprox
b are finally converted

back to a binary classification map and quantitatively
compared to the ground truth Bg . This comparison
involves IoU metrics on (i) a per-pixel and (ii) a per-
building bases. In the case of the per-building IoU metric,
a true positive is considered only if a building has at least
75% of its pixels overlap the pixels of the same building
in the ground truth.

The procedure described above is followed for all input
images with no changes to the values and thresholds used;
the only varying condition is the classification accuracy. In
our experiments, the input images are processed by the
proposed ICT-Net at different training snapshots having



different classification accuracies. Thus, multiple binary
classification maps were produced each with a different
classification accuracy.

Table III shows the quantitative results of the compar-
ison. A total of 5 cities were processed using the afore-
mentioned procedure. Figures 5a and 5b show the relation
between the reconstruction accuracy with respect to the
classification accuracy. We have used increasing classifica-
tion accuracies based on the same architecture (ICT-Net)
at different snapshots during the training. Using the binary
classification maps we have followed the aforementioned
procedure which is typical to the reconstruction process.
Two metrics have been used to assess the reconstruction
accuracy, namely per-pixel IoU and per-buildng IoU (with
75% threshold for being considered a true positive). As
expected, the graph shows a strong correlation between
the classification accuracy and the reconstruction accuracy.
However the reconstruction accuracy is consistently lower
than the classification accuracy by an average of 4.43%
± 1.65% (confidence level 95%) on the per-pixel IoU and
an average of 21.7%± 4.21% (confidence level 95%) on
the per-building IoU. This discrepancy can be attributed to
the fact that the ground truth images used for training the
network may contain errors and are in most cases man-
ually created which results in much higher classification
accuracy than the reconstruction accuracy. Moreover, the
high discrepancy on the per-building IoU can be attributed
to the fact that a threshold must be used i.e. 75%, when
calculating the true positives.

The results of this analysis clearly indicate that high
classification accuracy does not translate into high recon-
struction accuracy. More importantly though, the results
of the analysis clearly indicate that the reconstruction
accuracy must be taken into account as part of the loss
function along with the classification accuracy during the
training of the network.

Figure 6 shows an example of the downtown Montreal.
The building classification is generated with the proposed
ICT-NET network and refined as explained above. In this
example, LiDAR information was available which after
resampling at the same resolution as the orthorectified
image was used to extrude the 3D buildings from the
extracted boundaries. The result shown is fully automated
and no post-processing was performed. It should be noted
that no images of the city of Montreal have been used
in the training. We have manually evaluated the result by
counting the number of buildings and confirming that all
of them have been classified correctly by the network and
therefore reconstructed. The accuracy of the classification
is also evident from the fact that there is no ”bleeding”
between the buildings and any other urban features e.g.,
roads, trees, cars, etc in the final result.

VI. CONCLUSION

We have presented a novel network which combines the
strengths of state-of-the-art techniques like Dense blocks
in fully convolutional networks and feature recalibration

Figure 6: A fully automated result without any post-
processing. Downtown Montreal for which no training
images were used and no ground truth is available. Classi-
fication by ICT-Net and reconstruction by extruding the
extracted boundaries of the buildings using the LiDAR
pointcloud corresponding to the same area. The elevation
of all non-building points is set to zero. All buildings have
been manually verified that they are correctly classified.
The accuracy of the classification can also be visually
verified since there is no ”bleeding” between the buildings
and any other urban features e.g., roads, trees, cars, etc. The
orthophoto RGB image is courtesy of Defence Research
and Development Canada and Thales Canada.

using SE blocks. We have identified the requirements
for the particular task and based our decisions on the
actual characteristics and observations. We have shown that
the proposed architecture outperforms other state-of-the-art
including ensemble techniques.

Furthermore, we investigated the relation between the
classification accuracy and the reconstruction accuracy.
Due to the extreme difficulty of acquiring blueprints for
such large areas and the unavailability of 3D information
we have used the building boundaries as a proxy to the
reconstruction accuracy. The proposed ICT-Net at different
training snapshots was used to generate binary maps of
different classification accuracies which were then used
for extracting the boundaries. We presented a comparative
quantitative analysis which shows a strong correlation
between the two but also a consistent and considerable
decrease of the reconstruction accuracy when compared to
the classification accuracy.

With respect to the future work, we plan on extending
this work to (i) the classification of multiple urban feature
types and not just buildings, (ii) conduct a comparative
quantitative analysis using ground-truth 3D information ac-
quired by LiDAR and manually processed, and (iii) design
a loss function which takes into account the reconstruction
accuracy in addition to the classification accuracy.
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per-
pix.

per-
bldg

0.6451 0.7038 0.5004 0.4683 0.1887 0.7291 0.3880 0.1063 0.02384 0.6445 0.4952 0.5304 0.3192
0.6637 0.7583 0.7583 0.6749 0.4213 0.7514 0.4776 0.3575 0.1354 0.6765 0.6481 0.6437 0.4881
0.6893 0.6443 0.3451 0.6084 0.2944 0.6660 0.3080 0.5949 0.3770 0.6747 0.5734 0.6377 0.3796
0.7064 0.7034 0.5240 0.6046 0.2780 0.6855 0.3728 0.6671 0.3704 0.6760 0.5420 0.6673 0.41745
0.7254 0.7049 0.5520 0.6735 0.4325 0.7160 0.4820 0.5432 0.3194 0.7516 0.7386 0.6778 0.5049
0.7449 0.7812 0.6926 0.7032 0.4643 0.7881 0.5829 0.6026 0.3230 0.7056 0.7011 0.7162 0.5528
0.7611 0.7630 0.5976 0.7256 0.4850 0.7597 0.5128 0.6561 0.4286 0.7088 0.7336 0.7226 0.5515
0.7809 0.8408 0.7914 0.7907 0.5756 0.8078 0.5879 0.5059 0.3973 0.7436 0.7782 0.7378 0.6261
0.7939 0.8498 0.7936 0.7891 0.6016 0.8153 0.6202 0.6131 0.4328 0.7259 0.7703 0.7586 0.6437
0.8441 0.8549 0.8073 0.8212 0.6634 0.8490 0.6519 0.7541 0.5714 0.8179 0.8050 0.8194 0.6998

Table III: The ICT-Net at different training snapshots having different classification accuracy vs the reconstruction accuracy
measured using two metrics: per-pixel IoU, and per-building IoU (with a threshold of 75% overlap for true positives)

DRDC, and Hermann Brassard, Sylvain Pronovost, Dave
Lajoie, and Xian Wang from Presagis Inc Canada, for their
invaluable discussions and assistance in processing maps
for Montreal. The authors would also like to thank Defence
Research and Development Canada and Thales Canada for
providing orthophoto RGB images used for testing, and the
reviewers for their comments and suggestions.

REFERENCES

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation. CoRR, abs/1511.00561, 2015. 2
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