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Abstract—Eye fatigue is a common challenge in eye tracking
applications caused by physical and/or mental triggers. Its impact
should be analyzed in eye tracking applications, especially for the
dwell-time method. As emerging interaction techniques become
more sophisticated, their impacts should be analyzed based
on various aspects. We propose a novel compound measure
for gaze-based interaction techniques that integrates subjective
NASA TLX scores with objective measurements of eye movement
fixation points. The measure includes two variations depending
on the importance of (a) performance, and (b) accuracy, for
measuring potential eye fatigue for eye tracking interactions.
These variations enable researchers to compare eye tracking
techniques on different criteria. We evaluated our measure in
two user studies with 33 participants and report on the results
of comparing dwell-time and gaze-based selection using voice
recognition techniques.

Index Terms—Eye tracking, eye fatigue, dwell-time, voice
recognition, cognitive workload, NASA TLX, gaze-based inter-
action I. INTRODUCTION

A. Cognitive Workload

Cognitive workload is defined as the amount of mental effort
of a person performing a task or in the process of problem-
solving. It is related to a person’s working memory which has a
limited capacity [1], [2]. It is important to measure the amount
of cognitive workload related to performing a task given a
specific interface in order to compare the usability of different
systems. The NASA Task Load Index (TLX) questionnaire
is a well-known multidimensional method used to measure
subjects’ perceived workload in user studies [3], [4]. The TLX
questionnaire, which has been shown to be a valid tool to
measure workload [5], comprises of six scales: (1) physical
demand, (2) mental demand, (3) temporal demand, (4) effort,
(5) performance and (6) frustration, each on a 100-point range
with 5-point steps [6]. Each scale can be weighted based on its
importance and used to calculate the average value - known
as the overall workload. The overall workload serves as a
measure of the efficacy of the interaction technique and can be
used for comparing different methods based on their workload.
However, the results of the NASA TLX are subjective and
suffer from several limitations. One such limitation is that
subjects often confound task performance with the perceived
mental effort. Furthermore, as the results are obtained after a
task is completed so as not to interrupt the task, the NASA
TLX is not ideally suited for real-time scenarios [7]. For these

reasons, more robust and accurate methods should be applied
for measuring cognitive load, such as the use of physiological
data [8]. Researchers are thus beginning to investigate the
use of physiological signals, for example by measuring brain
activity. Techniques for measuring brain activity include: (1)
Electroencephalography (EEG) which detects brain waves [9],
(2) Magnetoencephalography (MEG) that records magnetic
fields of electrical activities in brain [10], and (3) Near-
infrared spectroscopy (NIRS) which is a spectroscopic method
that uses wavelengths in the near-infrared range to measure
blood flow changes in the frontal cortex [11]. These methods
although accurate in detecting brain activity require specialized
and sometimes cumbersome equipment. In addition, these
techniques are intrusive for users and therefore are restricted
to controlled environments such as laboratories [7].
B. Eye Fatigue

According to Vasiljevas et al., fatigue is the increase of
tiredness of a subject under load [12] and can be grouped into
physical, e.g. lack of sleep, and mental related causes such
as stress [13]. According to Marcora et al., mental fatigue
is the result of high cognitive activity [14]. Visual fatigue
defined as “eyestrain or asthenopia, which can be caused
by both two-dimensional and stereoscopic moving images”
[15] and which can cause motion sickness [16], occurs when
focusing on near objects. The visual function of the eyes may
cause visual fatigue, especially in long-time periods. Other
symptoms of visual fatigue include: tiredness, headaches, and
irritation of the eyes [17]. In this paper, we propose an
integrated measure to detect task load and visual fatigue during
gaze-based interactions. Our focus is on visual fatigue as it is
a common issue among computer users due to the prolonged
periods of time they spend working in front of a monitor [12].
We believe that a comprehensive measure that combines the
quantitative aspects of eye tracking fixation points with the
qualitative aspects of the NASA TLX scores could provide
an effective means to distinguish task load and fatigue in
different gaze-based interactions. The developed measure is
an alternative to using sensory devices in situations where the
application of biological sensors are either not possible, or
cumbersome to participants for user studies.

The contribution of this paper is twofold. Firstly, we in-
troduce FELiX: Fixation-based Eye Fatigue Load Index, an
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integrated measure of task workload and visual fatigue. The
term eye fatigue load is defined as a combined measure of task
workload and visual fatigue. The FELiX measure combines the
accuracy of the objective eye tracking data (quantitative inputs)
with the subjectivity of user’s experience as calculated by
the NASA TLX scores (qualitative inputs) during gaze-based
interactions. Secondly, we investigate the ability of FELiX
to measure eye fatigue load by conducting two user studies
comparing two gaze-based interaction techniques: dwell time
and voice recognition. The results of our studies show that
FELiX is able to distinguish between different gaze-based
interaction methods.

II. RELATED WORK
Researchers proposed various measures to measure eye

fatigue based on either eye movement analysis or biological
sensor inputs. Zheng et al. investigated the correlation between
eye blinks and mental workload among surgeons. They found
that shorter blink duration and frequency indicate an increase
of the mental workload [18]. Additionally, Borghini et al.
studied brain activity and heart rate of car drivers and found
the same results regarding the eye blink rates with mental
workload [19]. Lanthier et al. studied the correlation between
fixations and eye fatigue during visual search tasks and found
that fixation duration increases with fatigue [20]. Abdulin et
al. showed that the distance drift of fixation points in response
to a stimuli can reveal physical eye fatigue [21] and calculated
this using the fixation qualitative score (FQlS) [22]. Vasiljevas
et al. examined an analytical model of muscle fatigue proposed
to measure athletes fatigue [23] and adopted it to assess
eye fatigue in gaze-based tasks [12]. In studying the impact
of learning on fatigue, they found that the required break
time for gaze-based interactions can be measured. Researchers
have also applied self-evaluation questionnaires to evaluate
eye fatigue in user studies for gaze-based applications [24].
There are saccades-based approaches to measure eye fatigue
[25]–[27]. However, according to Abdulin et al., analysis of
saccades raw data requires expensive eye trackers, and these
approaches are not applicable on budget-friendly devices [21].
Building on the previous works, we propose a fixation-based
approach which can be applied on most eye trackers. Al-
though, previous measures can be used to measure eye fatigue
with high probability, they rely solely on eye movements or
sensor inputs. To the best of our knowledge, there are currently
no measures that integrate NASA TLX scores with the mea-
surements of eye movements using eye tracking to assess eye
fatigue. To take advantage of both physiological data and user
perceptions, we integrate eye movements (fixation points) as
an objective measure, and NASA TLX scores as a subjective
measure in FELiX. By combining workload and eye fatigue
in one measure, FELiX is ideally suited to compare different
interaction techniques in gaze-based interaction user studies.

III. EYE FATIGUE LOAD INDEX (FELIX)
We propose two variations of FELiX, both of which in-

tegrate the beneficial features (simplicity and direct ratings
by users) of the NASA TLX with gaze fixations to measure

eye fatigue load. Out of the six TLX questionnaire scales, we
only employ scores for the following three scales: physical
demand (PD), mental demand (MD), and performance (P).
This choice is based on the fact that the physical and mental
demands best describe the concept of workload to users,
whereas performance is best interpreted by the users as the
overall performance of the method. In contrast, the other
three scales (e.g. temporal demand, frustration, effort) focus
on usability and user satisfaction. The first variation of the
proposed measure FELiXper incorporates fixations recorded
(x, y, timestamp) during a gaze-based test as well as the
error rates of target selections and can be used in experiments
where performance is of high importance. On the other hand,
if accuracy is of higher importance, the second variation
FELiXacc can be used, which incorporates the Euclidean
distance to the target as well as the number of fixations. The
proposed measures, performance-based and accuracy-based,
measure the eye fatigue load for any gaze-based interactions
relying on eye movement measurements.
A. Cognitive and Eye-Tracking Coefficients

FELiX involves two coefficients, namely cognitive and eye-
tracking coefficients. The cognitive coefficient is a qualitative
factor which is calculated based on the users’ rating scores
of the NASA TLX questionnaire for the scales PD, MD, P
(rated on a scale of 1-100). The eye tracking coefficient is a
quantitative factor which is calculated from the eye-tracking
data recorded during the test session. Since the recorded
values used in calculating the eye-tracking coefficient can
vary depending on the test conditions, we use the logarithmic
function to scale down to a lower range the potentially
large index values. Furthermore, to avoid cases where one
coefficient diminishes the effect of the other (e.g. eye-tracking
coefficient or cognitive coefficient is close to zero), we offset
the coefficients by 1 and 9 respectively, such that the lowest
value is ≥ 1 as explained below. We applied similar parameters
introduced by previous research based on saccades [25]–[27],
and fixation analysis such as average fixation duration time
(AFD), and average number of fixations (ANF), as proposed
by Komogortsev et al. [22].
B. Performance-based FELiX (FELiXper)

Equation 2 shows the formula for the first variation of the
measure, FELiXper. This measure can be used for calculating
the eye fatigue load index for interaction techniques and is
dependent on the following parameters:

• average fixation duration time (AFD),
• error rate (ER) which is the total number of error selec-

tions divided by the total number of targets,
• average number of fixations (ANF), and
• NASA TLX questionnaire (3 scores: PD, MD, P)
The conditions and range of each of the parameters are

given by,
1) ∀a ∈ {PD,MD,P} : a ∈ Z ∧ 1 ≤ a ≤ 100

TLX scores are integers in range of 1 to 100.
2) ∀b ∈ ER : b ∈ R ∧ 0 ≤ b ≤ 1

The error rate is a real number from 0 to 1.
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3) ∀c ∈ {ER× P} : c ∈ R ∧ 0 ≤ c ≤ 100
The product of error rate and performance score is a real
number from 0 to 100.

4) ∀d ∈ CCper, d ∈ R ∧ 1 ≤ d ≤ 200
The cognitive coefficient CCper (equation 1) is the
average of TLX scores (PD, MD) added to the product
of error rate and performance score (P) which results in
a real number from 1 to 200. This coefficient reflects
the increase of task workload by multiplying the error
rate factor. In the case of an error-free condition, the
performance factor is removed to lower the cognitive
coefficient.

CCper = (
PD +MD

2
) + (ER× P ) (1)

5) ∀e ∈
(
ANF
AFD

)
, e ∈ R>0

The eye tracking coefficient is comprised of the average
number of fixations (ANF) divided by average fixation
duration time (AFD) which results in a positive real
number greater than 0. This measure reflects the duration
of fixation points on average.

6) ∀f ∈ FELiXper, f ∈ R ∧ f ≥ 1
FELiXper (equation 2) is the product of (a) logarithm
of cognitive coefficient CCper with the fixed constant
value 9 in base 10, and (b) the eye tracking coefficient
ANF
AFD with the fixed constant value 1 which results in a
real number greater or equal than 1.

FELiXper = log10(9 + CCper︸ ︷︷ ︸
cog. coeff.

)× (1 +
ANF

AFD︸ ︷︷ ︸
eye-track. coeff.

) (2)

C. Accuracy-based FELiX (FELiXacc)

Equation 4 shows the formula for the second variation of the
measure, FELiXacc. The measure can be used to calculate
the eye fatigue load index for interaction techniques where
accuracy is of utmost importance i.e. distance to target, such
as in target selection tasks. FELiXacc is dependent on the
parameters:

• average number of fixations (ANF),
• average Euclidean distance to the target (ADT), and
• NASA TLX questionnaire (2 scores: PD, MD) as de-

scribed above.
The distance (ADT) is measured as the difference between the
2D coordinates of the center of a target and the coordinates
of the corresponding fixation point. The conditions and ranges
of each of the parameters are defined as,

1) ∀a ∈ {PD,MD} : a ∈ Z ∧ 1 ≤ a ≤ 100
TLX scores are integers in range of 1 to 100.

2) ∀b ∈
(
ANF
ADT

)
, b ∈ R>0

The eye tracking coefficient is comprised of the average
number of fixations (ANF) divided by average Euclidean
distance to the target (ADT) which results in a positive
real number greater than 0. This measure reflects the
distance of fixation points to the target on average.

3) ∀c ∈ CCacc, c ∈ R ∧ 1 ≤ c ≤ 100
The cognitive coefficient CCacc (equation 3) is the

average of TLX scores PD and MD which results in
a positive real number between 1 and 100.

CCacc =
PD +MD

2
(3)

4) ∀d ∈ FELiXacc, d ∈ R ∧ d ≥ 1
FELiXacc (equation 4) is the product of (a) logarithm
of cognitive coefficient CCacc with the fixed constant
value 9 in base 10, and (b) the eye tracking coefficient
ANF
ADT with the fixed constant value 1 which results in a
real number greater or equal than 1.

FELiXacc = log10(9 + CCacc︸ ︷︷ ︸
cog. coeff.

)× (1 +
ANF

ADT︸ ︷︷ ︸
eye-track. coeff.

) (4)

D. Discussion: Rational of FELiX

We employed quantitative parameters typically recorded in
eye tracking applications in our measure since they reflect
technical workflow of an interaction technique. These techni-
cal parameters are bound to test applications and equipment.
Additionally, we applied workload parameters obtained from
the NASA TLX scores to include direct ratings of participants
who were involved in the practical aspects of an interaction
technique. The proposed measure should result in a single
value based on both technical and empirical parameters re-
garding the available measures. The purpose of multiplication
of both coefficients (quantitative and qualitative) is to control
the influence of both coefficients. In fact, the proposed measure
should be balanced in the way that no aspects of an interaction
technique (technical or empirical) can undermine the impact
of the other.

IV. METHODOLOGY
To evaluate the effectiveness of the proposed measures

we calculated the FELiX measure based on two gaze-based
interaction studies with 33 participants (13 female, from 22
to 35 years old, SD = 2.96). All subjects partook in both
experiments. The equipment is illustrated in Figure 1a.
A. Interaction Methods

1) Dwell-time: The dwell-time method integrates both
pointing and selection phases using the eye tracker only. The
range of dwell-time has been between 300-1100 milliseconds
for target selection in the literature [28]. We defined the target
activation threshold to 500 milliseconds, since it showed the
best performance in [29] and participants prefer dwell-times of
around 500 ms [28]. In other words, the target was considered
as selected when a subject focused on it for 0.5 seconds; if
the subject moved their gaze away from the target prior to the
0.5 seconds the selection process would restart.

2) Eye Tracking with Voice Recognition: For voice recogni-
tion, eye tracking was used for pointing and voice for selection.
The selection phase for the voice recognition technique is
triggered by a voice command which in our case was the
word ’select’ that was interpreted as a mouse click. The voice
command is captured by a headset microphone (Logitech
H370). An artificial ambient noise was introduced in the back-
ground through stereo desktop speakers at a volume of 50 dB
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to simulate a typical work environment. The method was
developed using the built-in Windows 10 speech recognition
capabilities available in the .NET framework. We implemented
a C# application to respond to the activation keyword ’select’
to trigger a mouse click.
B. Hypotheses

Based on the previous literature, which has demonstrated
dwell-time to be one of the most effective gaze-based inter-
action techniques [30], but one which can suffer from issues
related to Midas touch [31], we hypothesized that:

1) The accuracy-based FELiX (FELiXacc) will be lower
for dwell-time than voice recognition because dwell-
time should have lower fixation distances to target
(ANF
ADT ), as well as, lower physical demand (PD) and

mental demand (MD).
2) The performance-based FELiX (FELiXper) will be

higher for dwell-time than voice recognition because
dwell-time tends to result in more errors due to Midas
touch and should have higher duration of fixation points
(ANF
AFD ).

3) The analysis of both FELiX variations will allow us
to distinguish dwell-time and a multi-modal interaction
technique.

C. Apparatus

In our user study, the mouse pointer position is captured
using the Tobii 4C eye tracker1. All test applications were
developed and the user studies were run on a commod-
ity computer system: 64-bit Windows 10 PC with Intel i7
2.67GHz CPU, 12 GB RAM, 1 TB hard disk and NVIDIA
GeForce GTX 770 graphics card. Figure 1a shows the required
equipment of both interaction techniques.

1) Eye Tracking: Pointing Phase: The Tobii SDK
(TobiiEyeXSdk-Cpp-1.8.498) supports different events related
to eye tracking activities such as the location of the current
eye gaze, positions of both eyes, fixation points, and user
presence in front of the eye tracker. We employed the eye
gaze library (API) to obtain users’ gaze locations. These
locations show the current gaze position on the screen in
pixel coordinates. The SDK supports eye movements in a 3D
coordinate system (horizontal, vertical, depth). However, we
applied a 2D coordinate system (x,y) combined with a unique
timestamp corresponding to the recorded location such that
the mouse cursor was synchronized with the gaze positions
to control the mouse pointer on the screen. Eye-tracking for
both user studies was developed in C++ and integrated as a
new plug-in into the Tobii SDK. The samples were recorded
in distance of 60 cm (23.6 in) to the eye tracker with the
sampling rate of 90 Hz.

2) Voice Processing: Selection Phase: To simulate a click
on the item to be selected a headset microphone listens to the
user while suppressing the background ambient sounds/noise
in real-time. The Windows 10 Speech Recognition engine
(available in the .NET framework) was selected to parse the

1https://tobiigaming.com/product/tobii-eye-tracker-4c/

received commands and a C# program was developed to
trigger a left mouse click.
D. Experimental Design

Prior to running the studies, subjects were informed about
the purpose of the study, trained on each of the methods to
be tested, and participated in a pre-test questionnaire inquiring
on their background in the fields of eye tracking, voice recog-
nition technologies and their preferred kind of interaction.
After the pre-test questionnaire the Tobii calibration software
was used to calibrate the system for each participant before
starting the study. During the study each user partook in two
experiments with different stimuli: (1) matrix-based and (2)
dart-based. Overall, the studies took 8 minutes on average
for each participants, 6 minutes for the matrix-based, and 2
minutes for the dart-based test.
E. User Study 1: Matrix-based Test

In the first experiment, a matrix of buttons (targets), were
randomly distributed across the screen. The task of the subjects
was to point and click on buttons shown on the screen in
increasing numerical order for various levels of difficulty
from 1 (easy) to 5 (hard), described in detail below. The
level of difficultly was presented in ascending order. Further,
the transition from lower levels to higher levels was done
automatically, thus the whole test session for each participant
was continuous.

1) Stimulus: The stimulus consisted of 77 buttons (11
columns × 7 rows) in size of 110 × 80 pixels, some labeled
with numbers and others not, which covered the entire screen
at a resolution of 1920 × 1080 pixels on a Dell P2411Hb
monitor. Two marginal columns (far left, far right) and two
rows (top, bottom) were removed from the active selection due
to the high difficulty to be selected by users during the pilot-
test. Buttons that were not labeled are considered as barriers
or distractions. To provide feedback to the subject, labeled
buttons change color after the user has successfully pointed
and selected on the correct button. Wrongly selected barriers
(buttons with no label) are highlighted in red. The level of
difficulty of the stimulus was also increased across subject
trials. This was done by increasing the number of targets that
had to be selected by the subject. Five levels of difficulty were
used for each interaction method: level 1 (4 targets), level 2
(6 targets), level 3 (8 targets), level 4 (10 targets) and level 5
(12 targets). Targets were randomly distributed over the entire
screen for each level. Figure 1b shows the matrix-based test
during difficulty level 5.

2) Measures: The following variables were recorded: fix-
ation duration time, number of fixations, error rates, and
subjective ratings (based on the NASA TLX scores). An
internal logging module recorded subjects’ actions, fixation
duration times, wrongly selected targets, as well as the number
of fixations per each method.
F. User Study 2: Dart-based Test

In this experiment the subject was to select, as accurately as
possible, the bull’s-eye of a dart target using each interaction
method. In order to take into consideration the fact that eye
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tracking has different accuracy in different regions of the
monitor [32], we computed an average value based on five
trials for each interaction method where the stimulus was
shown at different areas of the screen near the center of the
screen randomly. Each new randomly chosen trial began two
seconds after selection of the previous target, allowing users
time to change their gaze and to focus on the new target.
For the dwell-time method, a countdown (5 to 0) representing
remaining 100 milliseconds was displayed during the selection
phase and users needed to focus on the dart shape before this
time was up.

1) Stimulus: The stimulus for this experiment consisted of a
dart-like target with three circles: green (0 to 30 pixels radius),
blue (30 to 60 pixels radius) and red (60 to 90 pixels radius)
as in Figure 1c. Points within the center area i.e. green have
the lowest range of distances to the bulls-eye; each other co-
centric circle has a larger range of distance values. Any point
lying outside the three co-centric circular areas is considered
as having a fixed maximum distance of 90 pixels. For this
experiment, a cross-hair icon was used.

2) Measures: The purpose of this test was to measure the
selected point’s distance on the dart target to the center of the
core circle (in green), thus the accuracy is measured in pixels.
The distance between the selected location and the center of
the stimulus is calculated based on the Euclidean distance.
Since the measured trials are chosen randomly, the average
is calculated to compare the two different methods based on
accurate selection. In addition, the number of fixation points
for each method was recorded.

G. Test Workflow

The order of interaction methods was randomly selected for
each participant. At the end of the two studies subjects filled
out a post-test questionnaire, which among other questions
consisted of the NASA TLX questionnaire [6].

V. RESULTS

We analyzed the results of our experiments using an analysis
of variance (ANOVA) followed by Bonferroni posthoc tests
with the JASP 0.11.1 software2.

A. User Study 1: Matrix-based Test

A one-way repeated measure ANOVA was performed to
examine the effect of interaction type on (1) number of
fixations, (2) fixation duration time, (3) error rate, and (4)
eye fatigue load index. Since we calculate average values on
the entire test session for each participant, we can ignore the
difficulty level factor in the analysis and take the total number
of targets (40) into account.

1) Number of fixations: We found a significant ef-
fect of interaction method on average number of fixations
(F(1,32)=7.79, p < .05). A posthoc Bonferroni comparison
test showed a significant difference between dwell-time (M =
262.97 fixations, SE = 34.06 fixations) and voice recog-
nition (M = 425.84 fixations, SE = 68.75 fixations).

2https://jasp-stats.org/

2) Fixation duration time: We found a significant ef-
fect of interaction method on average fixation duration
(F(1,32)=32.93, p < .001). A posthoc Bonferroni compari-
son test showed a significant difference between dwell-time
(M = 16.52 sec, SE = 1.32 sec) and voice recognition
(M = 39.77 sec, SE = 3.97 sec).

3) Error rate: We found a significant effect of interaction
method on error rate (F(1,32)=5.26, p < .05). A posthoc
Bonferroni comparison test showed a significant difference
between dwell-time (M = 0.12 errors, SE = 0.03 errors)
and voice recognition (M = 0.05 errors, SE = 0.01 errors).
Table I summarizes test results of the Matrix-based test.

4) Error locations on screen: Previous research has shown
that the right side of a monitor has lower precision for eye
tracking applications [32]. We studied the regions of the
screen in regard to errors. We divided the screen size into
nine equally-sized squares and counted the number of errors
occurring in each location. In our study, errors are defined
as wrongly selected targets (depicted in red in Figure 1b).
Errors on the borders were counted for all adjacent regions.
For instance, errors which occur in two regions are counted as
occurring in both regions. Figure 1d illustrates the total number
of errors for all participants for both interaction techniques.

5) Eye fatigue load index (performance-based): We found
a significant effect of interaction method on our eye fatigue
load index (F(1,32)=24.09, p < .001). A posthoc Bonfer-
roni comparison test showed a significant difference between
dwell-time (M = 17.24, SE = 1.2) and voice recognition
(M = 11.85, SE = 0.94). Figure 3a illustrates the calculated
performance-based eye fatigue load index for the Matrix test.
This confirms our second hypothesis that FELiXper is higher
for dwell-time than voice recognition.

Dwell-Time Voice Recog. Sig.
Mean number of fixations 262.97 425.84 p < .05
Mean fixation duration (sec.) 16.52 39.77 p < .001
Error rate 0.12 0.05 p < .05

TABLE I: Test results of the Matrix-based test. Dwell-Time
caused significantly more errors as expected.

B. User Study 2: Dart-based Test

A one-way repeated measure ANOVA was performed to
examine the effect of interaction type on (1) number of
fixations, (2) average distance to target, and (3) eye fatigue
load index.

1) Number of fixations: We found a significant ef-
fect of interaction method on average number of fixations
(F(1,32)=26.38, p < .001). A posthoc Bonferroni comparison
test showed a significant difference between dwell-time (M =
455.52 fixations, SE = 1.71 fixations) and voice recog-
nition (M = 1379.66 fixations, SE = 179.17 fixations).

2) Average distance to target: We found a significant
effect of interaction method on average distance to target
(F(1,32)=8.33, p < .05). A posthoc Bonferroni comparison
test showed a significant difference between dwell-time (M =
35.30 pixels, SE = 2.11 pixels) and voice recognition
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(a)

 

(b)
 

(c)  

(d)

Fig. 1: (a) shows test setting and equipment for both user studies. (b) shows the matrix-based test. The red button represents an
error selection. The circle on number 12 represents the eye pointer. (c) shows the Dart-based test stimuli, and (d) shows error
locations on screen. Orange bars represent total number of errors for voice recognition, and blue bars for dwell-time method.

(M = 29.27 pixels, SE = 2.07 pixels). Since our accuracy-
based FELiX (see equation 4) calculates the average distance
to target in its eye tracking coefficient (ANF

ADT ), it is similar with
the FQlS measure [22] in measuring distance to target. In com-
paring the two measures, we found that FELiXacc decreases
when the distance to target increases. In other words, higher
distance to the target (lower accuracy) is associated with lower
eye fatigue (Figure 2a). On the contrary, FELiXper increases
with distance to target (Figure 2b). Table II summarizes the
test results of the Dart-based test.

Dwell-Time Voice Recog. Sig.
Mean number of fixations 455.52 1379.66 p < .001
Average distance to target 35.30 29.27 p < .05

TABLE II: Test results of the Dart-based test. Dwell-Time
reached significantly lower number of fixations as expected.

3) Eye fatigue load index (accuracy-based): We found
a significant effect of interaction method on eye fatigue
load index (F(1,32)=31.74, p < .001). A posthoc Bonfer-
roni comparison test showed a significant difference between
dwell-time (M = 4.28, SE = 0.26) and voice recognition
(M = 12.96, SE = 1.53). Figure 3b illustrates the calculated
accuracy-based eye fatigue load index for the Dart test. This
result confirms our first hypothesis that dwell-time has a lower
FELiXaccc score than voice recognition.

C. Bi-variate Comparison

We proposed two variations on different criteria (perfor-
mance and accuracy). Each interaction technique can be
analyzed on both measures. A one-way repeated measure
ANOVA was performed to examine the effect of interaction
type on the mean of both FELiX variations. We found no
significant effect of interaction method on bivariate eye fatigue
load index (F(1,32)=3.77, p > .05). A posthoc Bonferroni
comparison test showed no significant difference between
dwell-time (M = 10.76, SE = 0.53) and voice recognition
(M = 12.40, SE = 0.86). Figure 3c illustrates the calculated
bivariate (performance-, and accuracy-based) average of eye
fatigue load index. Table III summarizes calculated FELiX
values on both criteria.

Dwell-Time Voice Recog. Sig.
FELiXper 17.24 11.85 p < .001
FELiXacc 4.28 12.96 p < .001
Bi-variate FELiX 10.76 12.40 p > .05

TABLE III: Test results of FELiX calculations. Dwell-Time
caused significantly higher eye fatigue based on performance
and lower eye fatigue based on accuracy as expected.

D. NASA TLX Scores

Figure 3d shows the required NASA TLX scores by FELiX
variations from the post-test questionnaire.

VI. DISCUSSION

The results indicate that the developed multi-factor simple-
to-calculate measure, which is solely dependent on the
recorded data of a user study, can be used to accurately assess
the amount of eye fatigue on participants based on available
measures and NASA TLX scores. Further, we showed how
to compare our measures with the available FQlS measure
and illustrated the correlations between them (Figures 2a,
2b). Although we only studied voice recognition as a multi-
modal gaze-based interaction technique, the dwell-time results
confirmed our assumptions that it results in a lower number of
fixations and lower fixation duration time compared to a multi-
modal interaction technique. Although dwell-time showed
lower accuracy (higher distance to the target) than voice recog-
nition (see Table II), it reached significantly lower eye fatigue
based on accuracy (see Table III and Figure 3b) confirming our
first hypothesis that FELiXacc is lower for dwell-time. This
is due to a significantly lower number of fixations (Table II)
and lower TLX scores (Figure 3d) for dwell-time. The higher
distance to the target for dwell-time is due to the activation
threshold which bounds a user’s decision time into a limited
time window to respond to target movements. The results of
the performance-based FELiX depicted in Figure 3a shows
higher eye fatigue for the dwell-time technique. This is due to
higher error rate and higher duration of fixation points (ANF

AFD )
of dwell-time as expected (see table I). This confirms our
second hypothesis that FELiXper is higher for dwell-time
than voice recognition. Although the bivariate comparison of
both FELiX variations (Figure 3c) shows relatively lower eye
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Fig. 2: Correlations of the accuracy-based (a) and performance-based (b) FELiX with fixation qualitative score (FQlS), for
33 participants. Dashed lines represent regression through voice recognition and solid lines through dwell-time. (c) shows eye
fatigue load index on both variations. Voice recognition technique shows sparse values on both variations.

 

(a)

 

(b)
 

(c)

 

(d)

Fig. 3: (a) shows performance-based eye fatigue load index for the Matrix test (p < .001), and (b) shows accuracy-based eye
fatigue load index for the Dart test (p < .001). (c) shows the calculated mean of both variations (p > .05). The cross symbols
show mean, and the horizontal lines show median points. (d) shows NASA TLX scores. Error bars represent standard error.

fatigue for dwell-time, the difference is statistically not signif-
icant (see Table III). Additionally, Figure 2c shows distinctive
clusters of dwell-time and voice recognition techniques based
on FELiX variations and reflects the potential of FELiX
measure to analyze similar eye tracking techniques based on
their eye fatigue values, and therefore our third hypothesis
that dwell-time can be distinguished from a multi-modal
interaction technique based on FELiX variations is confirmed.
We believe that these results would generalize, and that FELiX
is an effective means of determining eye fatigue load and can
differentiate different gaze-based interaction methods based on
their tendencies to cause the user more discomfort in terms of
visual fatigue and task load. We also studied the role of target
locations on screen and their relation with error rate and eye
fatigue. As illustrated in Figure 1d, the middle row of the
screen, towards the right side, has higher eye fatigue potential
according to the performance-based FELiX as these regions
produced higher errors. Since we applied no biological sensor
devices in our user studies, we could not compare the results
to study the correlations between our proposed measure and
physiological data. We leave this for future work. We did,
however, demonstrate that FELiX is an alternative measure to
be used in user studies with no access to electronic sensors.
Although the eye tracking parameters involved in FELiX

measure can be analyzed individually, the emerging interaction
devices offer a variety of quantitative parameters. Therefore,
the application of different parameters may be difficult to com-
pare different techniques. The analysis of our results indicates
the potential of our multi-aspect evaluation measure on two
similar interaction techniques. This experiment provides new
insight into the feasibility of multi-factor compound evaluation
measures for gaze-based interactions.

VII. CONCLUSION AND FUTURE WORK
As emerging interaction techniques become more sophis-

ticated and multi-dimensional, the need for more complex
and multi-factor measures is necessary. Therefore, we propose
fixation-based eye fatigue load index (FELiX), a compound
evaluation measure for gaze-based interactions based on the
NASA TLX scores and recorded eye tracking data. Our
measure combines the quantitative (technical) and qualitative
(empirical) aspects of interaction techniques in a simple-to-
calculate measure. Since NASA TLX scores are very common
in user studies, we can take benefit of its simplicity to assess
cognitive workload of different interaction techniques on the
same tasks. FELiX includes two variations to measure visual
eye fatigue based on (a) performance, and (b) accuracy. These
measures enable researchers to compare different eye tracking
techniques, specially dwell-time and multi-modal techniques,
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based on eye fatigue load index on different criteria. The
performance-based measure can be applied when the duration
of the entire fixation sequences and the error rates of target
selection are recorded, and the accuracy-based measure is
applicable for case scenarios where distance to target (selec-
tion accuracy) is available in the analysis process and can be
measured in user studies. Both measures take benefit of three
scores from the NASA TLX, (a) physical demand, (b) mental
demand, and (c) performance. The application of the proposed
measures can be regarded as a feasible alternative to biological
sensor inputs or to adopt gaze-based applications for children,
users with disabilities or elderly users to assess the amount of
eye fatigue in user studies before final release of eye tracking
applications. In addition, we presented an in-depth analysis
of the dwell-time method as the most common gaze-based
interaction technique with different approaches. As well as
developing measures for eye fatigue load, we proposed two
test applications to analyze eye tracking applications. In future
work, we plan on applying the proposed eye fatigue measures
on VR headsets with integrated eye trackers to study motion
sickness in VR applications.
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