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Abstract—Object classification is one of the many holy grails
in computer vision and as such has resulted in a very large
number of algorithms being proposed already. Specifically in
recent years there has been considerable progress in this area
primarily due to the increased efficiency and accessibility of deep
learning techniques. In fact, for single-label object classification
[i.e. only one object present in the image] the state-of-the-art
techniques employ deep neural networks and are reporting very
close to human-like performance.

There are specialized applications in which single-label object-
level classification will not suffice; for example in cases where the
image contains multiple intertwined objects of different labels.
In this paper, we address the complex problem of multi-label
pixelwise classification. We present our distinct solution based
on a convolutional neural network (CNN) for performing multi-
label pixelwise classification and its application to large-scale
urban reconstruction. A supervised learning approach is followed
for training a 13-layer CNN using both LiDAR and satellite
images. An empirical study has been conducted to determine
the hyperparameters which result in the optimal performance of
the CNN. Scale invariance is introduced by training the network
on five different scales of the input and labeled data. This results
in six pixelwise classifications for each different scale. An SVM is
then trained to map the six pixelwise classifications into a single-
label. Lastly, we refine boundary pixel labels using graph-cuts for
maximum a-posteriori (MAP) estimation with Markov Random
Field (MRF) priors. The resulting pixelwise classification is then
used to accurately extract and reconstruct the buildings in large-
scale urban areas. The proposed approach has been extensively
tested and the results are reported.

Keywords—urban reconstruction, remote sensing processing

I. INTRODUCTION

Recent advances in the efficiency and accessibility of deep
learning techniques have had a significant impact on the
progress of many important and at the time dormant problems
in computer vision. In particular, object recognition has greatly
benefited since for many years the state-of-the-art had been
almost restricted to minimal and incremental progress whereas
currently human-like performances in object recognition [14],
[15] are being reported, albeit for images with a single object.

Many successful applications which rely on single-label
object recognition using deep neural networks have already
been reported. The assumption with single-label object recog-
nition is that a network can be trained to recognize objects

from various categories and identify their general location [in
the form of a bounding box] provided that the image contains
exactly one object. More recently, it has been shown how
this learning pipeline can be extended to handle cases where
multiple spatially separable objects are present in an image
i.e multi-label object recognition [16]. However, in certain
applications the images may contain objects which are inter-
twined. Moreover, rather than the general location, the precise
location of the object is required. One such application is the
classification of geospatial objects for reconstruction of large-
scale urban areas. The data is in the form of geometry captured
with LiDAR and satellite RGB images. The geospatial objects
present in the data are buildings, roads, trees, artificial ground,
natural ground, cars, etc and all these are perfectly intertwined
i.e. a building is surrounded by ground, etc. One can think
of the data (LiDAR, images) as being perfectly tesselated by
many objects from each of these categories.

In this paper we address the problem of multi-label pix-
elwise classification for large scale urban reconstruction and
propose our distinct solution based on a 13-layer convolutional
neural network (CNN). The CNN is trained using both LiDAR
and satellite RGB images in multi-scale format, capturing
large-scale urban areas and produces an output of six pixelwise
values which are interpreted as likelihoods of the pixel in being
a building, road, tree, car, or ground [artificial, natural]. An
SVM linear classifier takes the likelihoods as inputs and maps
them to a single label. In the final step, boundary pixel labels
are refined.

Our technical contributions are:

• the design, development and supervized training of a
13-layer convolutional network. The CNN is specifi-
cally designed for the classification of geospatial ob-
jects appearing in remote sensor data and in particular
LiDAR and satellite RGB images into the following
six classes: buildings, roads, tree, cars, natural ground
and artificial ground.

• a method for introducing scale invariance during the
training. Due to the multiple scales the CNN produces
a likelihood-per-scale per pixel. These are further
processed and combined into a single label by training
an SVM. The labels are finally refined using graph
cuts for maximum a-posteriori (MAP) estimation with
Markov Random Field (MRF) priors which also ad-



dresses the problem of boundary pixels not being
assigned labels.

• a complete framework for the geospatial object classi-
fication and reconstruction of large-scale urban areas.
The multi-label pixelwise classification is used to
reconstruct the buildings of large-scale urban areas.
Generic objects such as cars and trees are replaced by
procedurally generated models to yield realistic 3D
visualizations.

A. Paper Organization

The paper is organized as follows: Section II presents an
overview of the state-of-the-art in the area of object recognition
and large-scale urban reconstruction. In Section III we present
a technical overview of our proposed technique and in Section
IV we provide a brief description of the dataset used. The
architecture of the developed network is described in detail in
Section V including the training, refinement, validation and
classification results. Section VI presents how these classi-
fication results are used in the context of large-scale urban
reconstruction. The conclusion and future work are discussed
in Section VII.

II. RELATED WORK

Object classification has been an active research topic in
computer vision for many years and large-scale urban recon-
struction for even more. In fact, object recognition is often
employed as the first step in reconstruction for identifying
the geospatial objects present in the scene. In this section we
provide a brief overview of the state-of-the-art in the areas
related to this work in object recognition using neural networks
and in large-scale urban reconstruction.

A. Object Classification

The first Convolutional Neural Networks (CNN) was in-
troduced by LeCun [1] for hand writing recognition and
could achieve outstanding performance. Yang et al. [2] later
extented the CNN with an additional layer for Support Vector
Machine (SVM) which could detect and classify traffic signs.
They demonstrated excellent performance and reported clas-
sification accuracies of 98.24% and 98.77% for the GTSDB
and CTSD datasets, respectively. In a different application
of object classification, Ijjina and Chalavadi [3] proposed
a method for recognizing human action. Instead of random
initialization of the network they propose computing the initial
weights of the CNN using genetic algorithms which minimize
the classification error; using this method they can achieve
classification accuracies of 99.98%and 96.92% for the UCF50
and MNIST datasets. Hu et al. [4] propose a Single Signal
Crowd CNN Model for counting dense crowds, and report
outstanding performance for the training on the UCSD dataset
and testing on the UCF-CROWD dataset. Liang et al. [5]
propose a recurrent CNN (R-CNN) for object recognition by
incorporating recurrent connections into each convolutional
layer. The R-CNN is shown to outperform the state-of-the-
art models on the CIFAR-10, CIFAR-100, MNIST and SVHN
datasets.

More recently [20] Fully-Convolutional Networks have
been shown to produce the best results for multi-label pixel-
wise classification by training on overlapping patches, however
a significant disadvantage is the fact that the produced output
is considerably downsampled compare to the input and further
processing is required. When dealing with semantic segmen-
tation of fine structures such as the ones appearing in urban
datasets this generates spurious results. Of similar performance
but same shortcoming is the CRF-based approach proposed in
[21] where again upsampling/interpolation is required on the
generated output.

B. 3D reconstruction

The state-of-the-art in urban reconstruction can be better
categorized according to the type and scale of the input data.
For a comprehensive survey of urban reconstruction of various
types and scales we refer the reader to the survey by Musialski
et al [6]. In this section, we provide a brief overview of
state-of-the-art in large-scale urban reconstruction from remote
sensor data, most relevant to our work.

In [19], Zhou et al propose an automated system which
given the exact bounding volume of a building can simplify the
geometry based on dual contouring while retaining important
features. Using this technique the authors were able to simplify
the original geometry considerably. A different technique was
presented in [18] where pointcloud data was converted auto-
matically to polygonal 3D models. This technique was appli-
cable directly on the raw pointcloud data without requiring
any user interaction. Later, in [17] the authors extended the
work to include a fast boundary refinement algorithm based
on graph-cuts which was used to refine the boundaries and
[24] for extracting appearance information.

On a similar line of research, Lafarge et al. [10] proposed
a method which produces excellent reconstructed models from
aerial LiDAR which can also handle the vegetation and com-
plex grounds. Following a more interactive approach, Arikan
et al [8] proposed a system for generating polyhedral models
from semi-dense unstructured point-clouds. Planar surfaces
were first extracted automatically based on prior semantic
information, and later refined manually by an operator.

The Achilles’ heel of almost all reported work in this
area is the geospatial object classification: if an object is
misclassified then subsequent steps will most definitely also
go wrong. Furthermore, extracting buildings from LiDAR data
often produces jagged boundaries which affects the accuracy
and quality of the reconstruction. Hence, it is of imperative
importance to have as accurate classification as possible at the
pixel-level. The proposed neural network achieves this yielding
average accuracy in the high ninety percentile for buildings.

III. SYSTEM OVERVIEW

The training dataset is first converted to the input form
expected by the network. Scale invariance is introduced by
training the network on composite images containing multiple
scales of the original depth map and RGB image captured by
airborne LiDAR and satellite imaging. For training data, this
also involves creation of multi-scale label data.

The overall size of each of these composite images is very
large. Hence random samples of a fixed patch size taken from



the composite images are used for training the CNN. The
CNN’s output is six floating-point values per input pixel. These
are interpreted as the likelihoods of the pixel to being classified
with one of the six labels: building, road, tree, car, artificial
ground, or natural ground. These likelihoods are used to train a
linear classifier which outputs a single label per pixel. In a final
step boundary labels are recovered and all labels are refined
using graph-cuts for maximum a-posteriori (MAP) estimation
with Markov Random Field (MRF) priors.

The training of the network (CNN, linear classifier) is
performed on a large urban dataset described in the following
Section IV. Once the network has been trained, data not used
during the training is processed and labels are generated. The
resulting labels are then used to extract only the buildings,
cars and trees which are further processed to produce the 3D
models representing the urban area.

IV. DATASET

The data used for the training and testing of the pro-
posed network is provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS). The data is
available as part of the benchmark on urban object detection
and 3D building reconstruction [12] and consists of several
datasets. In this work, we have used the Potsdam dataset for
2D semantic labeling [11] because of its higher accuracy.
The Potsdam dataset consists of 24 image pairs consisting
of three 6K × 6K registered images, namely a depth map
captured with airborne LiDAR with a sampling density of
5cms, a color satellite image, and the ground truth label map.
The label map shows the ground-truth per-pixel classification
into six classes: buildings (blue), trees (green), roads (white),
natural ground (cyan), artificial ground (red) and cars (yellow).
The ’artificial ground’ label contains all areas on the ground
that do not correspond to roads but are covered by materials
such as asphalt that are typically used for paving roads. In
particular, it contains parking lots, pavements, inner courtyards
and driveways (if paved). The ’natural ground’ label contains
any areas on the ground covered by vegetation other than
trees. In particular, it contains lawn and low bushes. The
remaining labels are self-explanatory. Figure 1 shows a sample
pair available in the Potsdam dataset.

(a) Depth map; con-
tains values ranging
from [0,1].

(b) Label map; con-
tains one of six val-
ues corresponding to
the geospatial feature
classes.

(c) Color image; con-
tains an RGB color
where each channel
ranges from [0,1].

Fig. 1: The Potsdam dataset consists of 24 image pairs. Each
pair consists of a 6K × 6K (a) depth map, (b) label map and
(c) color image.

V. NETWORK ARCHITECTURE

The proposed deep neural network consists of a 13-layer
Convolutional Neural Network (CNN) and a linear classifier
(SVM). A diagram of the network’s architecture is shown in
Figure 2.

Fig. 2: The proposed deep neural network for geospatial object
classification of remote sensor data. A 13-layer CNN followed
by a multi-class SVM can perform multi-label pixelwise clas-
sification into one of six labels: buildings, roads, trees, cars,
ground [natural, artificial].

The input to the network are RGBD values corresponding
to pixels contained in a small patch N×N of the input image.
The optimal size of the patch N×N is determined empirically
by varying the size while assessing the performance. Our
experiments [the most relevant of which are shown in Figure 9]
have shown that the value resulting in optimal performance is
N = 100. The CNN’s filter’s kernel size k was also determined
in a similar fashion and is set to k = 5. An extensive
empirical study showing the performance of the CNN with
respect to different combinations of 3 patch sizes [34, 70, 100]
and 7 kernel sizes [5, 7, 9, 11, 13, 15, 17] was performed. Table
I shows the optimal performance achieved by the CNN for
which the hyperparameters are set to patch size of 100× 100
and kernel size of 5× 5.

Based on the above, a patch of pixels with size 100× 100
and four channels per pixel (RGBD) becomes the input to the



Urban
Area

Ref. Bldgs
(%)

Artif.
Gnd.(%)

Trees(%) Nat.
Gnd.(%)

Roads(%) Cars(%) Acc.
(%)

P3 w/o 93.32 48.04 68.21 83.80 84.93 72.35 81.99
w 93.44 48.20 68.79 84.16 85.23 74.14 82.34

P4 w/o 94.19 19.99 68.57 74.74 79.02 70.60 79.55
w 94.41 20.51 69.36 75.14 79.33 72.58 79.99

P6 w/o 95.05 72.43 60.53 58.05 84.08 74.09 83.48
w 95.30 73.16 61.67 58.41 84.34 75.94 83.88

P7 w/o 94.10 52.80 50.61 70.46 89.58 76.28 84.78
w 94.26 54.40 50.82 70.65 89.73 77.73 85.01

TABLE I: Optimal network performance. The hyperparameters were
empirically derived: patch size is 100× 100 and kernel size is 5× 5.
The table also shows a comparison between before(w/o) and after(w)
applying the label refinement process.

network for all reported results. Similarly a kernel size of 5×5
is used for all spatial convolutions.

The first spatial convolution layer maps the input image
patch into 6 feature maps [of size 96 × 96]. The following
sub-sampling layer samples the output image of the previous
layer with 3× 3 kernel and average pooling, and generates 6
images [of size 48×48] output. The next layer of the network
applies a spatial convolution and maps the 6 input images to
12 output images [of size 44 × 44]. Then these images are
sub-sampled with 3×3 kernel max pooling, and 12 (21× 21)
mapping images are generated. All the pixels of the resulting
12 images are fully connected to a linear layer with 5292 nodes
i.e. 12 × 21 × 21. Next, the 5292-node linear layer passes
through two fully connected linear layers of 120-nodes and
80-nodes respectively. The final linear layer is fully connected
with the previous and consists of 6 nodes corresponding to
the six labels. Each convolutional operation is followed by the
non-linear operation ReLU(x) = max(x, 0). Thus, the CNN
models the following operation,

Γ(Γ(Γ(Πmax(ReLU(Ψ ?Πavg(ReLU(Ψ ? X))))))) 7→ Φp

(1)
where p is a pixel and Φp is a 6-tuple of values corresponding
to the six labels. In the above equation X denotes the input
data, Ψ denotes a convolution kernel, Γ(.) maps the input to a
fully connected linear layer, Πmax(.) is the max-pooling oper-
ation, Πavg(.) is the average-pooling operation, and ReLU(.)
is the rectified linear unit function.

As previously mentioned, the output of the CNN network
is a 6-tuple Φ of values for each pixel p contained in the input
patch

Φp =< φp1, ..., φ
p
6 > (2)

where each component in Φp is interpreted as the unnormal-
ized likelihood of the pixel p to be classified with any one of
the six labels. φp1...φ

p
6 represent the unnormalized probabilities

of building, tree, road, artificial ground, natural ground and
car respectively. We define Λp as the 6-tuple of normalized
likelihoods given by,

Λp =
eΦp

ω
=< λp1, ..., λ

p
6 >=<

eλ
p
1

ω
, ...,

eλ
p
6

ω
> (3)

where ω =
∑6
i=1 e

φp
i such that

∑6
i=0 λ

p
i = 1.

An example of the output is shown in Figure 3. The com-
ponents of the per-pixel likelihoods Λp are grouped according

to the labels and are shown as six images. The range of values
of each individual component of Λ is [0,1].

As it is evident from Figure 3, the output at this point
is a tuple Λ for each pixel in the input composite image.
This means that for each pixel in the original [non-composite]
image there will be essentially five sets of likelihoods within
each composite image; one for each scale. The five sets of
likelihoods Λi with 1 ≤ i ≤ 5 corresponding to each pixel are
combined into a single tuple Λ̄ by first up-scaling the images to
the original 6k×6k resolution and then averaging the per-pixel
likelihoods. Pixels lying on the boundaries for which not every
scale may output a likelihood are not assigned likelihoods.

The resulting 6k × 6k set of normalized likelihoods Λ̄p

corresponding to each pixel p and the original label map with
the same resolution 6k × 6k becomes the input to a linear
classifier (SVM). After training, the SVM learns weights W
and bias b of the mapping function f(W ×Λ̄p+b) 7→ li where
li, 1 ≤ i ≤ 6 indicates one of the six labels. Figure 3g shows
the result of this process on the likelihoods corresponding to
the label ’building’. Figure 3h shows the final output of the
SVM and Figure 3i shows the ground truth for the labels. It
should be noted that at this point, boundary pixels cannot be
assigned a label.

A. Training

The Potsdam dataset consists of 24 pairs of images. The
training is performed on 20 randomly selected image pairs
and validated against the remaining 4 image pairs. Inspired
by DenseNet [13], we incorporate scale invariance into the
training by preprocessing the original data to create composite
images containing multiple resolutions of the original. These
composite image pairs [depth, RGB, labels] become the input
to the network. A composite contains the five images Ii where
0 ≤ i ≤ 4 each with resolution corresponding to i × 16%
decrements of the original resolution i.e. 6k×6k, 5k×5k, 4k×
4k, 3k×3k, 2k×2k. The dataset contains considerable variance
in the orientations of the geospatial objects hence rotation
invariance is implicitly incorporated in the training.

The CNN was trained for 300 epochs on a single machine
with the following specifications: Intel Core i7-6700K CPU @
4.00GHz 8, 16GB RAM, 12GB NVidia GeForce GTX TITAN
X/PCIe/SSE2. The Torch API was used for the development of
the CNN and the code will be made available as open source.
The duration of the training for 300 epochs was 26 hours
however, as it can be seen from Figure 4 after the first few
epochs the training error rapidly reduces and almost converges.

Although the available memory on the GPU is 12GB, the
Torch API imposes a restriction on the maximum GPU usage
to 2GB. Hence, the available training data cannot be used
in its entirety. Instead, given the 20 training image pairs we
perform random sampling and gather as many training samples
[100×100 image patches] as the memory can fit. The uniform
random sampling from the 20 image pairs includes patches
from various resolutions. We ensure that all pixels within
each sampled image patch fall entirely within the same scale.
Sampled patches falling on boundaries between different scales
are rejected. This results in a total of 400, 000 training samples.

Finally, the likelihoods generated by the CNN are com-
bined as previously described and fed into multi-class SVM,



(a) Buildings (b) Roads (c) Trees

(d) Cars (e) Artificial ground (f) Natural ground

(g) Combined likelihoods for label ’building’. (h) Resulting SVM label map. (i) The ground truth labels.

Fig. 3: (a)-(f): The per-pixel class likelihoods; intuitively, the brighter the value of a pixel in a class’ image, the higher the
likelihood of the pixel to be classified with that class. Bottom row: (g) The combined likelihoods for label ’building’ which is
used as part of the input to the SVM, (h) the per-pixel label classification map resulting from SVM; note that boundary pixels
are not assigned a label at this point, (i) the ground truth labels.

which generates the pixel’s classification after using a one-vs-
all learning strategy. The SVM learns how to map the 6-tuple
Λ̄p corresponding to each pixel p into a single class which
classifies the input with the highest margin. The Torch API was
again used for the development of the SVM and the code will
be made available as open source. The duration of the training
was 27 minutes and was performed on the same machine as

above.

B. Maximum-a-posteriori Inference with Markov Random
Field Priors for Label Refinement

The linear classifier combines the six pixel-wise likelihoods
produced by the CNN into a single label. Pixels along the
boundaries of the image cannot be assigned a label because



Fig. 4: Training error of 300 iterations

the convolutional filter falls out of bounds. To overcome this
problem Overfeat [23] first introduced the shift-and-stitch trick
where shifted versions of the input were processed and the
results interleaved into a full resolution output. However, the
computational efficiency of this approach does not scale to the
current large-scale urban datasets we are dealing with.

Instead, we propose the use of graph-cuts for maximum-
a-posteriori (MAP) estimation with Markov Random Field
(MRF) priors. We reformulate the problem as finding an
optimal labeling fp for every pixel p such that f(p) 7→ l where
l is a new label. In addition to the six labels we include a new
label unknown to account for the boundary pixels which have
not been assigned a label. Hence, the set of labels becomes
[buildings, roads, trees, cars, natural ground, artificial ground,
unknown].

The energy function which is minimized is then given by,

E(f) = Eunary(f) + Epairwise(f) (4)

The unary energy term Eunary(f) provides a measure of
the compatibility of the new label under the labeling f(pi) to
the pixel pi with label lpi in the observed data and is given
by,

Eunary(f) =

N∑
i=0


10, if f(pi) 6= lpi .

15, if f(pi) = unknown.

0, if f(pi) = lpi

(5)

The pairwise energy term Epairwise(f) provides a mea-
sure of compatibility of the new labels under the labeling
f(pi), f(pj) for neighbouring pixels pi and pj respectively
and is given by,

Epairwise(f) =

N∑
i,j=0

{
0, if lpi = lpj .

20, otherwise.
(6)

The pairwise measure V (fpi , fpj ) between neighbouring
pixels pi, pj , and pk can be trivially shown to be metric since
the following conditions are true,

V (f(pi), f(pj)) = 0↔ i = j

V (f(pi), f(pj)) = V (f(pj), f(pi)) > 0

V (f(pi), f(pj)) ≤ V (f(pi), f(pk)) + V (f(pk), f(pj))

(7)

This is a multi-label MRF problem with non-submodular en-
ergy potentials and as such can only be approximately solved.
The alpha-expansion algorithm is used to break the multi-label
problem into a series of binary problems. Experiments have
shown that after 5 iterations the energy E(f) is reduced on
average 12% and the overall accuracy of the classification
results increases by [0.5 − 1%]. Table I shows a comparison
between the performance before(w/o) and after(w) this process.
Image boundary pixels for which no label was generated
are now relabeled based on the new labeling resulting from
the energy minimization using graph-cuts. Figure 5 shows an
example output of this process.

(a) (b)

Fig. 5: Maximum-a-posteriori Inference with Markov Random
Field Priors for Label Refinement. (a) The labels generated
by the network. Pixels along the image boundaries cannot be
assigned a label. (b) Dense and refined labeling resulting from
the proposed method. Pixels along the image boundary are
assigned a label.

C. Validation

The proposed network was validated against two sets of
test images: (a) the 4 image pairs out of the 24 available
which were not used in the training and (b) the 14 image
pairs available for testing for which ISPRS did not make the
ground truth publicly available. The performance is measured
in terms of Precision (P ), Recall (R), and F1 score which are
defined as,

P =
tp

tp+ fp
R =

tp

tp+ fn
F1 = 2× P ×R

P +R
(8)

where tp indicates the true positives, fp indicates the false
positives, and fn indicates the false negatives.

1) Classification Results for 4 image pairs: Out of the 24
available image pairs, 20 were used for the training and the re-
maining 4 were used for validation. The network performance
statistics for the 4 validation images were presented in Table
I. These statistics were computed from the ground truth labels
made available with the Potsdam dataset.

2) Classification Results for 14 image pairs: The ISPRS
benchmark also contains 14 image pairs for which ground
truth was not made publicly available. The following network
performance statistics were computed by and provided by the
ISPRS Working Group II/4 organizers as part of their urban
classification benchmark. Table II shows the evaluation of the
overall classification results for the 14 test images and as it



pred./ref. roads bldgs nat. gnd. tree car artif.
gnd.

roads 89.9 1.6 4.9 2.9 0.1 0.6
bldgs 2.5 94.40 0.8 2 0 0.3
nat. gnd 6.8 0.90 82.40 9.1 0 0.7
tree 7.6 1 20.3 70.6 0.4 0.1
car 17.60 1.6 0.8 1.80 76.7 1.7
artif. gnd. 38.7 8.3 28.60 4.8 2 17.60
Prec./Corr. 84.40 95 72.5 77.4 86.3 60.5
Rec./Compl. 89.9 94.40 82.40 70.6 76.7 17.60
F1 87.1 94.70 77.10 73.9 81.2 27.3

TABLE II: The overall evaluation of the classification results for the
14 test images for which ground truth was not provided. The network
performance statistics were computed by and provided by the ISPRS
Working Group II/4 organizers as part of their urban classification
benchmark. All shown values are percentages.

pred./ref. roads bldgs nat. gnd. tree car artif.
gnd.

roads 89.44 1.17 6.04 1.82 0.11 1.42
bldgs 1.80 96.61 0.38 0.87 0.09 0.24
nat. gnd. 17.64 1.10 70.3 9.82 0.04 1.11
tree 9.72 1.18 16.73 71.75 0.4 0.22
car 18.51 1.7 0.48 1.69 76.02 1.59
artif. gnd. 64.15 6.8 11.96 2.24 0.49 14.36
Prec./Corr. 63.5 93.2 72.5 81.5 88.7 66.5
Rec./Compl. 89.4 96.6 70.3 71.7 76 14.40
F1 74.2 94.90 71.40 76.3 81.90 23.60

TABLE III: Evaluation results for urban area P4-14. All shown
values are percentages.

can be seen the overall accuracy for building classification is
almost 95%. Figure 6 shows the evaluation results for one of
the 14 test images, namely P4-14. The individual evaluation
results for P4-14 are shown in Table III.

(a) (b) (c)

Fig. 6: The evaluation result for one of the 14 test images. Resolution
6k × 6k. (a) Satellite image of the urban area P4-14. (b) Generated
label map. (c) Red/green image, indicating wrongly classified pixels.

VI. URBAN RECONSTRUCTION

The classification results are further processed. The depth
map is used to extract boundary points and extrude 3D models
to represent the geospatial objects in the scene. In particular
the boundaries for the buildings are extracted and extruded
to create polygonal models and generic objects such as cars
are replaced by CAD models, and trees are replaced by
procedural models. Figure 7(a)-(b) shows the generated labels
being projected onto the same 3D models and Figure 7(c)-
(d) shows textured models only for the classified buildings.
Figure 8a shows a closeup of an urban area in which buildings
have been replaced by polygonal models, cars by generic CAD

models and trees by procedural models. The same scene with
textures and from a different viewpoint is shown in Figure 8b.

(a)

(b)

(c)

Fig. 7: (a) The resulting labels being projected onto the 3D
models. (b) The satellite image projected onto the scene mod-
els. (c) Textured models showing only the classified buildings.

VII. CONCLUSION

We have presented a novel technique for multi-label pixel-
wide classification for reconstruction of large-scale urban
areas. Unlike existing methods, the proposed method relies on
a relatively small CNN to efficiently process large sets of data.
An empirical study was performed and presented to determine
the parameters for which the network produces optimal results.
Scale invariance is incorporated in the processing by training
the network on composite images containing multiple scales
of the originals. This results in multiple per-pixel classification



(a)

(b)

Fig. 8: Reconstructed and textured models. Buildings are
replaced by polygonal models, cars by CAD models, and trees
by procedural models. A mesh resulting from triangulating the
depth map is used for the other classes: roads, natural and
artificial ground.

labels which are mapped into a single label using a trained
linear classifier. Pixels lying on image boundaries are not
assigned any label. We reformulate the problem as a labeling
problem and propose the use of graph-cuts for maximum-a-
posteriori inference of those labels with Markov Random Field
priors. The result is a dense set of labels where all pixels in the
image are assigned a label according to the minimized energy
function. The proposed technique has been extensively tested
on large-scale datasets depicting urban areas for which ground
truth is available. The achieved accuracy in the classification
ranges in the 90th percentile.
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