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Abstract

One of the main challenges of gaze-based interactions is the ability to distin-

guish normal eye function from a deliberate interaction with the computer sys-

tem, commonly referred to as ‘Midas touch’. In this paper we propose Eye-

TAP (Eye tracking point-and-select by Targeted Acoustic Pulse) a contact-free

multimodal interaction method for point-and-select tasks. We evaluated the

prototype in four user studies with 33 participants and found that EyeTAP is

applicable in the presence of ambient noise, results in a faster movement time,

and faster task completion time, and has a lower cognitive workload than voice

recognition. In addition, although EyeTAP did not generally outperform the

dwell-time method, it did have a lower error rate than the dwell-time in one of
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our experiments. Our study shows that EyeTAP would be useful for users for

whom physical movements are restricted or not possible due to a disability or in

scenarios where contact-free interactions are necessary. Furthermore, EyeTAP

has no specific requirements in terms of user interface design and therefore it

can be easily integrated into existing systems.

Keywords: Gaze-based interaction, eye tracking, Midas touch, voice

recognition, dwell-time, contact-free interaction

1. Introduction

In gaze-based interaction eye tracking sensors measure a user’s gaze posi-

tion on a computer screen and differing methods (e.g. dwell time, multimodal

interaction, etc.) are employed to allow the user to interact with the system.

Gaze-based interaction offers a suitable alternative to conventional input de-5

vices (i.e. keyboard and mouse) in several different scenarios including for users

for whom manual interaction might be difficult or impossible, or in situations

where contact-free interaction is required. However, gaze-based interaction has

well-known challenges among which is Midas touch, where a system cannot

distinguish the basic function of the eye (i.e. looking and perceiving) from de-10

liberate interaction with the system. In this paper, we propose EyeTAP (Eye

tracking point-and-select by Targeted Acoustic Pulse), a multimodal gaze-based

interaction approach that addresses the Midas touch problem by integrating the

user’s gaze to control the mouse with audio input captured using a microphone

to trigger button-press events for real-time interaction.15

Traditionally, pointing and clicking is done with a mouse; a user uses a mouse

to move a cursor to a target (pointing phase), and clicks on the mouse to select

or trigger a function (selection phase). We designed EyeTAP as a multimodal

method point and click interaction method that uses eye gaze for pointing and

auditory input for selection. Specifically, with EyeTAP the mouse pointer po-20

sition is captured using an eye tracker and selection is done by generating an

acoustic signal (e.g. a tongue click, microphone tap, verbal command), which in
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our studies was captured by a headset microphone. Our solution thus provides

a contact-free interaction method for users (including those with special needs)

and addresses the Midas touch problem. EyeTAP provides contact free inter-25

actions in case scenarios where the use of speech commands are not possible,

e.g. due to reasons such as difficulty of word detection by user’s language, ac-

cent, or pronunciations of words; or for users with severe disabilities not capable

of speaking or interacting with keyboard and mouse. Figure 1 illustrates the

overview of EyeTAP.30

In comparison to gaze-based multimodal interactions which use gestures, foot

pedals, or buttons, using speech/sound enables contact-free interactions and

supports users to point and select a target based on two separate modalities

by simply using a microphone. This allows for a smooth and simple-to-use

interaction technique that does not require extensive equipment or training. In35

addition, using sound input does not require users to shift their gaze focus (e.g.

to a button or other hardware device) to trigger a function.

EyeTAP’s ability to use different modes of interaction for selection, such

as a mouth click or a microphone tap, overcomes the limitations of natural

language processing methods and is applicable when speech commands are not40

feasible (e.g. due to disabilities or due to the surrounding environment). We

showed that EyeTAP can be an alternative to using speech with no need for

voice recognition engines independent from users language or accent.

We performed four extensive user studies comparing EyeTAP to dwell-time,

eye tracking with voice recognition, and mouse interaction for point-and-click45

tasks. The analysis of the results showed that although EyeTAP had comparable

performance with other gaze-based interaction techniques, it did not outperform

the dwell-time method on most criteria. At the same time, EyeTAP generally

performed better than gaze-based interaction with voice recognition selection

and thus might be suitable in cases where users cannot use voice commands,50

have restricted physical movement, or where manual interaction with an input

device is not possible, e.g. medical practitioner having both hands busy or in a

situation where physical contact with equipment should be avoided.
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The contributions of this paper are twofold. First, we have designed and

developed a simple-to-use, multimodal gaze-based interaction technique. The55

proposed approach allows for a completely hands-free interaction solution be-

tween the user and the computer system using only an eye-tracker and an audio

input device. Second, we present four user studies comparing EyeTAP with two

other widely-used gaze-based interaction techniques and the mouse.

2. Related Work60

In this section, we provide an extensive literature review of gaze-based inter-

action techniques addressing the Midas touch problem. Although, some studies

are not directly related to our proposed method, we were inspired by their

intuitions and the approaches provided a broad view of both hands-on and

hands-free multimodal gaze-based interaction techniques.65

In eye-based interaction, the Midas touch problem occurs when a user ac-

cidentally activates a computer command using gaze when the intention was

simply to look around and perceive the scene. According to Jacob [1], this

problem occurs because eye movements are natural, i.e. the eyes are used to

look around an object or to scan a scene, often without any intention to acti-70

vate a command or function. This phenomenon is one of the major challenges

in eye interaction techniques [2, 3], and diverse methods have been proposed to

address the Midas touch problem. The solutions can be categorized into four

groups according to the interaction technique they employ: (a) dwell-time pro-

cessing, (b) smooth pursuits, (c) gaze gestures, and (d) multimodal interaction.75

Below, we describe each of these solutions and provide example use-cases, as

well as describe their shortcomings or relationship to our work.

2.1. Dwell-time processing

Dwell-time is the amount of time that the eye gaze must remain on a spe-

cific target in order to trigger an event. Researchers have tried to detect specific80

thresholds to handle the Midas touch problem [4, 5]. For example, Pi et al.
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proposed a probabilistic model for text entry using eye gaze [4]. They reduced

the Midas touch problem by assigning each letter a probability value based on

the previously chosen letter such that a letter with lower probability requires a

longer activation time to be activated and vice-versa. Velichkovsky et al. ap-85

plied focal fixations to resolve the Midas touch problem by assigning the mean

duration time (empirically set to 325 ms) of a visual search task to trigger a

function [5]. Dwell time has been shown to be even faster than the mouse in

certain tasks, e.g. selecting a letter given an auditory cue [6]. The method

of applying focal fixations may be very subjective since searching time varies90

across users when applying the dwell-time technique [7]. Moreover, increasing

the threshold may increase the duration time of the entire interaction. Con-

versely, reducing the amount of dwell-time may lead to more errors for some

users [8]. Pfeuffer et al. investigated visual attention shifts in 3D environments

for menu selection tasks [9]. They compared three interaction techniques for95

menu selection: (1) dwell-time (activation threshold of 1 sec.), (2) gaze button

(applying eye gaze to point, selecting by a button press), and (3) cursor (apply-

ing eye gaze to point to a context, precise movement and selecting by a manual

controller). They found that the dwell-time technique was the fastest in case of

performance. In addition, the cursor technique was found to be the most phys-100

ically demanding technique. They also found that dwell-time was considered to

be the easiest method according to users. However, the gaze button and the

dwell-time caused the highest eye fatigue.

Although dwell-time has been found to be the fastest technique among eye

tracking techniques, some studies [8, 10, 11] show that it is error prone particu-105

larly in situations when a lower dwell-time is used. However, longer dwell times

may cause eye discomfort or fatigue [9]. For this reason, we decided to turn

towards multimodal techniques to address the Midas touch problem.

2.2. Smooth pursuits

Smooth pursuits are a form of eye movement that occurs when a moving110

stimulus (e.g. an object or animation) is followed with gaze [12]. The method is
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typically implemented by using a visual point on the interface, then to activate

the target the user must fixate on one of these points. This technique has been

used to select targets [13], control home appliances [14], to activate functions

such as mouse clicks [15] or to use the music player on a smartwatch (Orbits) [16].115

Schenk et al. proposed a framework (GazeEverywhere) which enables users

to replace mouse inputs [15]. This solution includes a computer to process

gaze interactions (gaze PC), a computer to show the results (unmodified PC)

which are connected via a micro-controller to trigger mouse click events, and a

glass pane to project gaze targets on a second screen. Vidal et al. introduced120

an interaction technique (Pursuits) for large screens using moving objects to

be activated by eye gaze [13]. They used a desktop eye tracker and a public

display to select targets on the screen. Velloso et al. presented a framework

(AmbiGaze) to control ambient devices such as TVs and stereos (each assigned

with an infrared (IR) beacon) with eye gaze using a head-mounted eye tracker125

[14]. The system employs a server to process gaze inputs and control the devices.

Esteves et al. presented a framework for a multi-touch Android smartwatch to

input commands using a head-mounted eye tracker [16]. They developed three

use-cases: a music player, a notifications panel with six colored points on the

smartwatch screen representing six applications (e.g. social media apps), and a130

missed call menu with four commands, call back, reply text, save number and

clear the notification.

Smooth pursuit gaze-based interaction has several drawbacks. First, it re-

quires a moving stimulus [17] and therefore, it requires implementing an addi-

tional graphical user interface (GUI) to handle the events. Second, this kind of135

point-and-select may slow down the interaction due to the pursuit time which

can add latency to target selection completion time. In addition, the presence of

moving paths on a limited screen size may limit users to a restricted set of func-

tions. Third, this type of interface may lead to visual distraction on the screen

and may not be suitable for long working sessions or for users with disabilities;140

in fact, moving objects require free space on a screen which is therefore depen-

dent on the screen size. Thus, although smooth pursuits is a promising method

6



for public and large digital displays, it is not an ideal method for everyday

interaction.

2.3. Gaze gestures145

Gaze gestures are sequences of eye movements that follow a predefined pat-

tern in a specific order [18]. Researchers have proposed techniques which can

be applied to analyze eye movements to detect unique gestures (e.g. [19, 18,

20, 21]). Drewes et al. assigned up, down, left, right and diagonal directions to

different characters on the keyboard thereby allowing a user to select a letter by150

moving the eye gaze in any direction [18]. In addition, they tried to distinguish

between natural and intentional eye movements by using short fixation times

during gesture detection and long fixation times to reset the gesture recogni-

tion. Istance et al. developed two-legged and three-legged gaze gestures (up,

down and diagonal patterns) for command selection to play World of Warcraft155

for users with motor impairment disabilities [21]. In a similar work, Hyrskykari

et al. studied both dwell-time and gaze gesture interactions in the context of

video games and found that gaze gestures had better performance for command

activation [20]. Moreover, gaze gestures produced fewer errors than the dwell-

time and led to less visual distractions. Bâce et al. proposed an AR prototype,160

containing a head-mounted eye tracker and a smartwatch, to embed virtual

messages to real-world objects to be shared with peer users [19]. The authors

integrated eye gaze gestures as a pattern to encode and decode messages at-

tached to a specific object previously tagged by another peer user, thus using

gaze gestures as an authentication mechanism for secure communication. In165

general, gaze gestures have shown promising performance to address the Midas

touch problem.

As gaze gesture techniques rely only on performing specific sequences of eye

movements, they may lead to eye fatigue in a long working session as longer eye

inputs are correlated with eye fatigue [9]. In addition, the detection algorithms170

may reduce the speed of interaction and the limited amount of possible eye

gestures may reduce the number of functions available to users. Further, apply-
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ing gaze gesture commands requires a guiding system since users need to map

commands with their corresponding gestures [22]. Learning the correct gestures

may also be challenging and requires training for novice users [22]. This kind of175

interaction solution, therefore, may not be appropriate for users who must use

a system over a long period of time or for users with disabilities.

2.4. Multimodal Interaction

Multimodal techniques apply extra inputs from another modality (e.g. touch,

audio, etc.) as the trigger of a function in addition to eye tracking. They can180

be divided into the following sub-categories: using mechanical switches, touch

interaction, head movements, facial gestures, hand gestures, and gaze gestures.

2.4.1. Applying a specific (mechanical) switch

For certain specific domains, such as rehabilitation, and user groups (i.e.

users with motor impairments or severe disabilities), researchers have used me-185

chanical switches to activate an event or function. For instance, Rajanna et al.

proposed a combined framework for users with disabilities which applies a foot

pedal device to click on objects and to enter text [23]. Meena et al. applied

a soft button on a wheelchair to control the movements of the wheelchair in

different directions (horizontal, vertical and diagonal) [24]. Sidorakis et al. ap-190

plied a switch for a gazed-controlled multimedia framework on virtual reality

head-mounted displays (Oculus Rift) to resolve the Midas touch problem [25].

Biswas et al. proposed a joystick to control point-and-select tasks for combat

aviation platforms to address the Midas touch problem [26].

2.4.2. Touch interaction195

Some researchers have proposed the integration of using touch interaction,

for a limited number of functions, to increase the accuracy of target selection.

Pfeuffer et al. applied a cursor at the gaze point to be controlled by a finger

holding a tablet where a finger tap on the screen leads to a click on the current

location of the pointer (CursorShift method) [27]. In a similar study by Pfeuffer200

et al., the authors investigated the integration of finger touch and pen inputs on
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a tablet for zooming or annotating tasks on images [28]. Although this technique

was not introduced as a solution to the Midas touch problem, it can increase

the accuracy of selection which leads to reducing Midas touch. Stellmach et al.

proposed an interaction technique to select targets on a remote screen via eye205

gaze and a handheld touchscreen device [29].

2.4.3. Eye gaze and head movements

Stellmach et al. proposed multimodal techniques to interact with distant

targets in which they studied combinations of gaze and head movements joint

with a smartphone touch modality for precise selection and manipulations [30].210

Kytö et al. proposed similar techniques for AR headsets. They investigated head

movements and eye gaze movements with a variety of combinations including

selection on device and hand gesture commands and found the highest error

rates and lowest completion time for the eye only selection technique [31].

2.4.4. Facial gestures recognition215

Rozado et al. studied the potential of using live video monitoring to de-

tect facial gestures to enhance eye tracking interaction [32]. In their work

(FaceSwitch), they associated facial gestures (opening mouth, raising eyebrows,

smiling and twitching the nose up and down) to simulate left and right mouse

clicks and customized some keyboard functions such as page down key press.220

They found that increasing the number of gestures leads to lower recognition

accuracy when monitored simultaneously.

Facial gesture recognition has several drawbacks. First, real-time video mon-

itoring to detect the correct face gesture is very challenging beyond controlled

lab conditions to address the real-life scenarios [33]. In addition, any emotional225

change or unwanted facial behavior may lead to false activation of functions,

since modeling the human behavior is challenging [33]. Another drawback is

the latency between pointing using the eye tracker and selecting using the facial

gesture algorithm; precise timing is required for smooth interactions. Moreover,

modeling of facial expressions requires a wide range of visual signal processing230

9



[33].

2.4.5. Gaze and speech interaction

Besides the above related works which were aimed at addressing the Mi-

das touch problem, multimodal interaction have also considered gaze and voice

commands. Mayer et al. proposed an interaction technique (WorldGaze) to235

track user’s fields of view and gaze point to refine the voice command engines

on smartphones for more precise results [34]. Beelders et al. studied word pro-

cessing tasks using voice commands and eye gaze compared with mouse and

keyboard interactions in their work [35]. However, although they showed the

application of speech interaction is feasible for word applications, the gaze and240

speech interaction technique could not reach the effectiveness and performance

of keyboard interaction. Acartürk et al. reviewed the challenges and possibili-

ties of gaze and speech modalities for elderly users in their work [36]. Esteves

et al. conducted comparative studies using head mounted displays (HMDs)

to investigate the performance of hands-on and hands-free (including gaze and245

speech) interaction techniques and found that applying a clicker and dwell-time

were the most favorable interaction techniques [37].

Miniotas et al. proposed a technique for selecting closely spaced targets

based on speech commands [38]. They applied a grid of 5 × 5 squares as

stimulus to test two interaction techniques: (a) gaze and speech, and (b) gaze250

only. They suggested a dwell-time of 1500 ms for targets of size of 30 × 30 pixels

with distance of 10 pixels for the best performing setup for target selections

based on their results. However, they reported a slow performance in case of

selection speed when activation threshold for the dwell-time increased.

Beelders et al. conducted an experiment to study eye gaze and speech com-255

mands comparing to the mouse for target selection tasks [39]. They applied

a stimulus as shape of a circle with 800 pixels diameter containing 16 squares

on its edge to be selected in all directions. They found that the mouse had a

significantly higher performance in case of throughput and completion time and

also stated that using dwell-time technique should be more efficient than speech260
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commands. Sengupta et al. integrated gaze and voice inputs for web browsing

tasks such as search, navigation, and bookmark of pages [40]. They found the

multimodal approach had a higher performance than each modality alone.

Zhao et al. proposed a multimodal technique of eye gaze by smooth pursuits,

and speech commands and found promising results when compared to mouse265

clicks [41]. They found that the selection of a word for confirmation should

match the task for a better performance. Further, participants who chose the

activation word scored higher compared to those who used a pre-determined

word. Similar to the EyeTAP method, the authors also suggested applications

of other sound inputs such as pseudowords or exclamation for users with severe270

disabilities.

2.4.6. Gaze and hand gesture interaction

Gaze has also been combined with hand gesture inputs, for example, Chat-

terjee et al. proposed an interaction technique that uses gaze and hand gestures

to select targets at the most desired location on screen [42]. They found that the275

combination of gaze and hand gesture outperformed each interaction modality

alone. Pfeuffer et al. proposed a similar approach of applying eye gaze and a

hand pinch to select and manipulate targets in a 3D space for virtual reality

(VR) platforms [43]. Hand-gesture interactions are prone to muscular fatigue

[44] and therefore may challenge users in certain circumstances.280

2.4.7. Gaze and button press

Hild et al. investigated multimodal gaze-based interactions: gaze and button

press by hand, gaze and button press by foot, and the mouse input [45]. They

found overall faster performance for gaze-based techniques than the mouse for

task completion time. Kumar et al. proposed a technique (EyePoint) comprised285

of eye gaze and button press on keyboard to improve the accuracy of gaze-based

pointing in a Look-Press-Look-Release pattern of commands [46]. The EyePoint

technique was designed in four steps to select a target accurately. The user looks

at a desired target (Look), then presses and holds a hotkey on the keyboard
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which magnifies the specific spot on the screen (Press). A second look at the290

magnified scene is then done to refine the exact location of target to be selected

(Look), then the key is released to select that target (Release). Gaze and button

techniques have shown promising results in improving the selection accuracy.

2.4.8. Gaze gesture recognition

Istance et al. proposed a technique (Snap Clutch) to resolve the Midas touch295

problem [3]. They applied a disengagement technique to turn off gaze selections

when not needed by defining four modes provided in up, left, right, and down

directions on the screen. These modes are activated when looking at different

directions (eye gesture) and visual feedback appear on the screen to confirm the

intention.300

2.5. Summary

We reviewed a wide range of techniques that can be applied with good ac-

curacy and are suitable for specific domains with specific peripherals or extra

user interface designs. The need for contact-free gaze-based interactions is nec-

essary to deal with the emerging requirements regarding hygiene interactions305

from a safe distance. Building on the promising results found for multimodal

techniques, and specifically exploring the use of non-speech sounds to allow for

a more diverse population of users as suggested by Zhao et al. [41], we devel-

oped EyeTAP. EyeTAP can be applied to fill the gap for both able-bodied and

disabled users with or without physical contact (to the microphone), with no310

need for specific user interface design or peripherals and using the simplicity of

the Morse code [47] to encode/decode input signals.

3. EyeTAP Prototype

Using a multimodal solution that combines eye-gaze with acoustic inputs

(audio or speech detection) can be regarded as an alternative to the reviewed315

literature on multimodal interaction methods and has the advantage of not

requiring additional hardware (in comparison to other gaze-based techniques)
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other than an eye tracker or a specialized user interface design. Although there

has been some work done on audio detection to simulate system events for

computer interactions (e.g. [48, 49, 50]) on signal processing for complex inter-320

actions. Conversely, in our work we applied acoustic inputs only as a way of

sending commands.

A simple mouse interaction consists of moving the pointer to a target (point-

ing phase), and clicking on it to trigger a function (selection phase). In the

EyeTAP prototype the mouse pointer position is captured using an eye-tracker325

(in our case the Tobii 4C) and selection is done by generating an acoustic pulse

by mouth (e.g. a mouth click) which is captured by a headset microphone

(Logitech H370). The experiments using the EyeTAP prototype were run on

a commodity computer system: 64-bit Windows 10 PC with Intel i7 2.67GHz

CPU, 12 GB RAM, 1 TB hard disk and NVIDIA GeForce GTX 770 graphics330

card. Thus, EyeTAP is a cost-effective system that can be applied at almost

any work space. Figure 1a gives an overview of the the EyeTAP system.

3.1. Eye Tracking: Pointing Phase

The Tobii SDK (TobiiEyeXSdk−Cpp−1.8.498) supports different events re-

lated to eye tracking activities such as providing the location of the current eye335

gaze, positions of both eyes, fixation points and user presence in front of the eye

tracker. We employed the eye gaze library (API) to obtain users’ gaze locations.

These locations show the current gaze position on the screen as pixels. The SDK

supports eye movements in a 3D coordinate system (horizontal, vertical, depth)

but we applied a 2D coordinate system (x, y) such that the mouse cursor was340

synchronized with the gaze positions to control the mouse pointer on the screen.

Eye tracking for the EyeTAP prototype was developed in C++ and integrated

as a new plug-in into the Tobii SDK.

3.2. Auditory Processing: Selection Phase

To select a target the user makes a sound which is captured by a headset345

microphone. The intensity of the noise and distance of the microphone are
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adjusted by the user prior to using the system. A detected pulse in the real-

time audio signal (amplitudes larger than a predefined threshold) is regarded

as a click. The threshold’s value can be adjusted based on the environment

to reduce background ambient noise. When a significant increase in the signal350

(greater than the threshold) is detected a mouse click event is triggered as shown

in Figure 1b. In general, recording is categorized into two phases: audible and

silent periods. Any audible period with an intensity (amplitude) greater than

the predefined threshold triggers an input signal to the system; on the other

hand, values smaller than the threshold value are suppressed. Thus, any spoken355

sound e.g. speaking into the microphone or clicking the tongue, can trigger a

click-event. Signal detection is continuous and works in real-time. The selection

time-point is the moment the input pulse goes over the specified threshold at

which point the click-event is triggered. This is purposedly designed to reduce

possible synchronization issues resulting from eye gaze drifting away from the360

initial selection point. Thus our method initiates the selection phase as soon as

it detects a trigger signal while the gaze pointer is still on the target.

Specifically, click detection is implemented as follow. First we capture the

analog sound wave stream received from the microphone via the AudioFormat

class provided in the Java Platform Standard Edition. 7 API [51] and digitize365

it using the sampling rate of 44100 Hz in a fixed buffer size of 256 bytes at

a time. The buffer size is regarded as a detection window which is a queue

for further processing. We set an empirical amplitude as threshold for pulse

detection based on the available noise in the environment. Any receiving signal

with an amplitude higher than the threshold is regarded as a ‘click candidate’370

if it remains above the threshold for a minimum of 3 consecutive time-steps

in which case it is considered a physical click and a mouse event is triggered.

This step is necessary to enable a smooth flow of clicks in the case of noise or

random vocal inputs by users and to reduce the effects of sudden noise inputs

to the auditory detection API to avoid ‘over clicking’ events. The output of the375

auditory processing module is a series of 0s and 1s which are coupled with a

mouse interaction event handler to trigger a left click based on 1 values. The
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entire workflow of the auditory module operates in real-time.

The intuition behind the auditory processing was inspired from the simplicity

of the Morse code [47], which consists of a series of ON/OFF signals triggered380

by tone or light. In this case, information is interpreted using dots and dashes

and therefore can be used to represent transmitted signals through a sequence

of True/False variables. Figure 1b illustrates the step-wise operation of target

selection phase by the EyeTAP technique.

 

(a)

 

(b)

Figure 1: (a) The EyeTAP system: the eye tracker is used to move the pointer from A to B.

The user makes an acoustic pulse and the signal processing module interprets the signal as an

input and triggers a click event to select B. (b) The pipeline of the audio processing module.

Analog audio waves are received from the microphone (C), and converted to a digital using an

analog to digital converter (AD Converter) (D). The converted signal is stored in a fixed-sized

buffer for further processing (E). A function detects the amplitudes higher than threshold as

click candidates from the buffer (F). More than three click candidates in buffer are recognized

as a click signal to be sent to a mouse event handler (G). Mouse handler triggers a left click

(H).

3.3. Hypotheses385

We hypothesize that a multimodal gaze-based interaction technique based

on sound inputs can be applied to (a) enable a high accuracy contact-free in-

teraction and (b) provide an alternative to mitigate the Midas touch problem.

Furthermore, we hypothesize that our proposed technique will be easier to use

compared to dwell-time and gaze with voice recognition and will be faster than390

the voice recognition technique.
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4. Evaluation

To evaluate the effectiveness of the developed EyeTAP method, we ran

four user studies with 33 participants (13 female, from 22 to 35 years old,

mean = 26.06). Prior to running the experiments, subjects were informed395

about the purpose of the study, trained on each of the methods to be tested,

and participated in a pre-test questionnaire probing them on their background

in the fields of eye tracking, voice recognition technologies and their preferred

kind of interaction in the case of contact-free alternatives. The Tobii calibration

software was used to calibrate the system for each participant before starting400

the study. At the end of the user studies subjects filled out a post-test question-

naire, which consisted of the NASA TLX questionnaire [52] followed by specific

questions about the subjects’ perceptions of the different interaction methods.

The order of interaction method was randomly selected for each participant.

We played an artificial ambient noise through stereo desktop speakers of 50405

dB to simulate a typical work environment since EyeTAP and voice recognition

rely on audio inputs. Participants were asked to produce a tongue click type

sound (‘tick’) which lasted for 2 seconds on average.

To determine the effectiveness of the EyeTAP method, we analyzed the

results of our experiments using an analysis of variance (ANOVA) followed by410

Bonferroni posthoc tests with the IBM SPSS software, and applied descriptive

statistics based on dispersion with the JASP 0.11.1 software [53].

4.1. Interaction Techniques

We applied two eye tracking techniques to be compared with the performance

of EyeTAP and included mouse as the baseline technique for point-and-select415

tasks. In other words, for all tests our independent variable is the interaction

technique: (a) the mouse, (b) dwell-time, (c) eye tracking with voice-recognition,

and (d) EyeTAP.
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4.1.1. Mouse

For the mouse method (our baseline method for comparison), subjects simply420

used a mouse to move to targets and select them in numerical order.

4.1.2. Dwell-time

For the dwell-time method an internal timer was used to determine if a target

was selected. Given the range of dwell-time is typically 300-1100 milliseconds

for target selection [54], we defined the target activation threshold to 500 mil-425

liseconds, since this showed the best performance in [55, 54]. In other words,

a target was selected when a subject focused on a target for 0.5 seconds, and

if the subject moved their gaze away from the target prior to 0.5 seconds the

target selection process would restart.

4.1.3. Eye Tracking with Voice recognition430

For voice recognition, eye tracking was used for pointing and voice for selec-

tion. The method was developed using the built-in Windows 10 speech recog-

nition capabilities available in the .NET framework. We implemented a C#

application to respond to the activation keyword ‘select’ to trigger a mouse

click. The same microphone was used as for the EyeTAP test.435

4.2. User Study 1: Matrix-based Test

In the first user study, the EyeTAP interaction method was compared with:

(a) the mouse, (b) dwell-time, and (c) eye tracking with voice-recognition. In

this test, a matrix of buttons (targets), were randomly distributed across the

screen. The task of the subjects was to point and click on buttons shown on the440

screen in increasing numerical order for various levels of difficulty from 1 (easy)

to 5 (hard), described in detail below. The order of interaction methods seen

by each subject was randomly selected for each participant however, the level

of difficultly was presented in ascending order.

We were inspired by Miniotas et al.’s work that applied a stimulus composed445

of a grid of 5 × 5 squares [38]. The matrix grid was designed to cover a large
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area of the screen and to have equally-sized targets in close adjacent proximity.

This enabled the analysis of errors that are most important for the Midas touch

problem. Furthermore, since different areas of a screen have different accuracy

in target selection for eye tracking applications [56], this test allowed us to study450

target selection accuracy on different areas of the screen.

4.2.1. Stimulus

The stimulus consisted of 77 buttons (11 columns × 7 rows) some labeled

with numbers and others not, which covered the entire screen at a resolution

of 1920 × 1080 pixels on a Dell P2411Hb monitor. Two marginal columns455

(far left, far right) and two rows (top, bottom) were removed from the active

selection due to the high difficulty to be selected by users during the pilot-test.

Buttons that were not labeled are considered as barriers or distractions. To

provide feedback to the subject, labeled buttons change color after the user

has successfully pointed and selected on the correct button. Wrongly selected460

barriers (buttons with no label) are highlighted in red. The level of difficulty of

the stimulus was also increased across subject trials. This was done by increasing

the number of targets that had to be selected by the subject. Five levels of

difficulty were used for each interaction method: level 1 (4 targets), level 2 (6

targets), level 3 (8 targets), level 4 (10 targets) and level 5 (12 targets). Targets465

were randomly distributed over the entire screen for each level. Figure 2 shows

the matrix-based test during difficulty level 5. The cursor that was used was a

black circle because it was easier for users to keep it on the target’s boundary

rather than a pointer. The rationale of ‘difficulty’ for a higher number of targets

lies in the experience that the selection of more targets caused eye fatigue for470

some users during the test, especially for the dwell-time method.

4.2.2. Measures

The following dependent variables were recorded: completion time, path cost

of selecting targets, error locations, and cognitive load (based on the NASA TLX

scores). An internal logging module recorded subjects’ actions, selection times,475
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Figure 2: The matrix-based test for difficulty level 5. Target buttons are distributed randomly

across the screen. The red buttons illustrate errors. The black circle on number 12 shows the

current eye gaze location. Labels were enlarged for higher visibility.

as well as the number of correct and wrong selections.

For the path cost measure the shortest path between targets and the pro-

duced path by each interaction method was processed. The intuition behind this

measure was to analyze the trajectory of pointer movements (footprints) of each

interaction technique. In other words, since the pointer was mapped with eye480

gaze, we could detect which interaction technique would select targets with less

eye movements (see Figure 3). This measure was specifically designed to test

the hypothesis whether dwell-time requires less eye movements than multimodal

techniques due to pointer drift caused by synchronization between pointing and

selection phases. To compare the shapes of the generated paths, we used the485

dynamic time warping (DTW) algorithm [57, 58, 59]. Since DTW works on a

time-value domain the paths produced by the eye tracker were decomposed into

their horizontal and vertical values and compared with their associated shortest

path models’ X and Y values. We applied the built-in DTW function in the

Python DTW 1.3.3 module [60] to measure the deviations of each path from490

the shortest path model.

4.2.3. Results

A two-way repeated measures ANOVA (methods × difficulty levels) was

performed to examine the effect of interaction type on: (1) completion time and
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(b)

Figure 3: The path cost overview of (a) dwell-time, and (b) EyeTAP on the screen.

(2) path costs of target selection for each method and difficulty levels. We also495

analysed the distribution of each measure since it indicates the consistency of

each interaction technique on most users.

Completion time: We found a significant effect of interaction method

on completion time (F(12,384)=8.51, p < .001). A posthoc Bonferroni com-

parison test showed a significant difference between mouse (M = 1.04 sec,500

SE = 0.02 sec) and all other eye tracking methods (see Figure 4a). In ad-

dition, EyeTAP (M = 2.57 sec, SE = 0.12 sec), dwell-time (M = 1.40 sec,

SE = 0.06 sec) and voice recognition (M = 3.20 sec, SE = 0.25 sec) are sig-

nificantly different (p < .05). Figure 4a illustrates the overall completion time

per method for each target.505

We also looked at the distribution of values for completion time, and found

a large range for both EyeTAP (range = 8.69 sec, IQR = 0.90 sec) and voice

recognition (range = 7.71 sec, IQR = 1.39 sec) comparing to the mouse

(0.70 sec, IQR = 0.14 sec) and dwell-time (1.80 sec, IQR = 0.84). The in-

terquartile range comparison was the narrowest for mouse and highest for voice510

recognition, but there was a similar variability between EyeTAP and dwell-time.

Path costs of target selections: To examine the paths produced by selecting

targets we compared the original locations of the targets and the shortest path

(ideal path model), as described earlier. For each method, we had a distance
cost

measure to the shortest path. This metric can be regarded as the footprint515

of each interaction technique on the display. A two-way repeated measures
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ANOVA (methods × difficulty levels) showed that there was a significant ef-

fect of interaction type on path cost (F(12,384)=2.57, p < .05). A Bonferroni

posthoc test showed that dwell-time (M = 76.73 pixels, SE = 5.09 pixels)

produced the shortest path among all other interaction techniques, even better520

than the mouse interaction (M = 109.25 pixels, SE = 3.82 pixels) with p <

.05. There were no significant differences between dwell-time (M = 76.73 pixels,

SE = 5.09 pixels), EyeTAP (M = 84.80 pixels, SE = 3.59 pixels) and voice

recognition (M = 82.03 pixels, SE = 4.41 pixels). Figure 4b, which shows

the path costs for all interaction methods, reveals that eye tracking move-525

ments produce significantly lower movements than mouse on a large screen. We

found the highest variability in paths for dwell-time (range = 126.81 pixels,

IQR = 43.13 pixels) and the lowest for mouse (range = 79.21 pixels, IQR =

33.26 pixels). Voice recognition (range = 111.11 pixels, IQR = 29.91 pixels)

showed a larger range compared to EyeTAP (range = 88.88 pixels, IQR =530

22.76 pixels). All eye tracking techniques reached a significantly lower median

than the mouse which reflects a shorter path for eye gaze pointing on the screen

than mouse pointing. EyeTAP reached the narrowest interquartile range for

gaze path on screen among all interaction techniques which represents similar

performance for most users comparing to other interaction techniques. The535

dwell-time method showed the highest variability and voice recognition reached

the second highest variability based on the interquartile range measure.

Errors in target selections: To measure the effectiveness of each Midas

touch solution we need to consider a penalty for wrongly selected neighboring

targets. These targets are shown in red on the screen (see Figure 2). We540

projected the locations of errors per each interaction method, since difficulty

level 5 has the highest number of targets (12 targets) on the screen, we illustrate

the locations for this difficulty level in Figure 5. EyeTAP has the highest number

of errors, however the figure reveals the potential regions of the screen which

are more error prone. As shown in the figure, most errors occurred from the545

center towards the right side of the screen. In fact, the right side of the screen

produces more errors than the left side. Moreover, the lower side produces more
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errors than the top side. This is similar to Feit et al.’s finding showing that the

bottom and right regions of the screen have lower accuracy [56]. We confirm

their results and also demonstrate that the same regions are also more error550

prone.

4.3. User Study 2: Dart-based Test

The purpose of this user study was to measure the accuracy of EyeTAP in

comparison to the previously proposed eye-based interaction methods. Specifi-

cally, we wanted to focus on target selection accuracy. The task of the subject555

was to select, as accurately as possible, the bull’s-eye of a dart target using

each interaction method. In this test, the eye tracker was used for the point-

ing phase for each of the interaction methods, however selection of the target

was triggered by different methods, i.e. dwell-time, voice command or EyeTAP

acoustic signal. In order to take into consideration the fact that eye tracking has560

different accuracy in different regions of the monitor, we computed an average

value based on five trials for each interaction method where the stimulus was

shown at different areas of the screen near the center of the screen randomly.

Each new randomly chosen trial began two seconds after selection of the pre-

vious target, allowing users time to change their gaze and to focus on the new565

target. For the dwell-time method, a countdown (from 5 to 0) representing the

time left in milliseconds until the target selection was displayed and after each

selection visual feedback was given to the user by showing the achieved distance

to target.

4.3.1. Stimulus570

The stimulus for this test consisted of a dart-like target with three circles,

green (0 to 30 pixels radius), blue (30 to 60 pixels radius) and red (60 to 90

pixels radius) as shown in Figure 7a. Points within the center area i.e. green

have the lowest range of distances to the bulls-eye; each other co-centric circle

has a larger range of distance values. Any point lying outside the three co-575

centric circular areas is considered as having a fixed maximum distance of 90

22



pixels. For this test, a cross-hair icon was used.

4.3.2. Measures

The purpose of this test was to measure the selected point’s distance on

the dart target to the center of the core circle (in green), thus the accuracy580

(i.e. dependent variable) is measured in pixels. Since the measured trials are

chosen randomly, the average is calculated to compare different methods based

on accurate selection.

4.3.3. Results

We performed a one-way repeated measures ANOVA to compare the effect585

of the different interaction methods on accuracy. The results of the ANOVA

showed all eye tracking methods have statistical difference (F(3,96)=104.92,

p < .001) on selection accuracy. In fact, the mouse interaction has the lowest

distance to target (highest accuracy) compared to eye tracking techniques. Eye-

TAP (M = 45.11 pixels, SE = 2.28 pixels) achieved the highest mean pixel590

accuracy compared to dwell-time (M = 35.30 pixels, SE = 2.11 pixels) and

voice recognition (M = 29.27 pixels, SE = 2.07 pixels). Figure 4c depicts the

results of the accuracy test.

We found the highest variability for EyeTAP on both measures (range =

59.62 pixels, IQR = 19.42) among eye tracking techniques whereas the voice595

recognition technique reached the lowest distribution (range = 41.05 pixels,

IQR = 15.87) and lowest distance to the target, and dwell-time (range =

48.96 pixels, IQR = 17.91) showed a higher distribution than mouse (range =

17.76 pixels, IQR = 4.39).

4.4. User Study 3: Ribbon-shaped Test600

In order to compare our method to other gaze-based techniques, we mea-

sured the performance target selection based on the Fitts’ law [61]. This study is

used to analyze pointing interaction methods in accordance to well-established

academic standards. As part of this study, we measured three metrics to com-

pare the performance of all interaction techniques for point-and-select tasks, (1)605
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(c)

Figure 4: (a) Completion time of point-and-select tasks for each target (p < .001). (b)

Path cost comparison calculated using the dynamic time warping (DTW) algorithm. All eye

tracking techniques have shorter path lengths than mouse interaction for traversing items

on a screen for matrix-based user study (p < .05). (c) The distance to target in pixels for

dart-based test (p < .001).

 

(a) Dwell-Time

 

(b) Voice Recognition

 

(c) EyeTAP

Figure 5: The locations of errors on the screen during the matrix-based user study (see Figure

2) for difficulty level 5. The right side of the screen as well as bottom side are more error

prone than the left and top sides.

throughput (how good a selection technique operates), (2) movement time and

(3) error rates for ribbon-shaped targets (see Figure 7b).

The intuition of this test was to test interaction techniques based on the

Fitts’ law with rectangular buttons (‘FittsStudy’ application [62]).

4.4.1. Stimulus610

The stimulus for this test consisted of two ribbon-shaped buttons to be se-

lected on the left and right sides of the screen with random widths and distances

as shown in Figure 7b. The test sessions includes three distances (256, 384, 512)
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pixels, and two widths (96, 128) pixels.

4.4.2. Measures615

The following dependent variables were recorded: movement time, through-

put, and error rates for this test. We applied the ‘FittsStudy’ application by

Wobbrock et al. [62] for this test.

4.4.3. Results

A one-way repeated measures ANOVA was performed to examine the effect620

of interaction type on: (1) movement time, (2) throughput and (3) error rates

for each interaction method. We also analysed the distribution of each measure

since it indicates the consistency of each interaction technique on most users.

Movement time: We found a significant effect of the interaction method

on movement time (F(3,96)=69.42, p < .001). A posthoc Bonferroni com-625

parison test showed a significant difference between mouse (M = 684.15 ms,

SE = 16.80 ms) and all other eye tracking methods (Figure 6a). In addition,

among all eye tracking methods, dwell-time (M = 599.39 ms, SE = 18.76 ms)

achieved significantly lower movement time than EyeTAP (M = 1794.89 ms,

SE = 170.90 ms) and voice recognition (M = 2014.20 ms, SE = 89.28 ms)630

techniques. However, there is no statistical significance between EyeTAP and

voice recognition. The lower movement time of dwell-time method compared to

mouse interaction is associated with the low activation time (500 ms).

We found the highest variability for EyeTAP (range = 5.67 sec, IQR =

0.69 sec) among all interaction techniques, whereas dwell-time (range = 0.42 sec,635

IQR = 0.09 sec) and voice recognition (range = 2.03 sec, IQR = 0.37

sec) reached lower distributions among eye tracking techniques. The mouse

reached the narrowest range (range = 0.34 sec) but larger interquartile range

(IQR = 0.11 sec) than dwell-time. We found the dwell-time as the best inter-

action technique based on the movement time measure for the ribbon-shaped640

test as illustrated in Figure 6a.
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Throughput: We found a significant effect of the interaction method on

throughput (F (3, 96) = 75.13, p < .001). A posthoc Bonferroni comparison

test showed a significant difference between dwell-time (M = 3.30 bits/sec,645

SE = 0.36 bits/sec) and all eye tracking methods (Figure 6b). The mouse

(M = 4.81 bits/sec, SE = 0.11 bits/sec) achieved higher throughput than

the eye tracking methods. However, there is no statistical difference between

voice recognition (M = 1.15 bits/sec, SE = 0.09 bits/sec) and EyeTAP (M =

1.34 bits/sec, SE = 0.12 bits/sec).650

We found that EyeTAP (range = 2.73 bits/sec, IQR = 0.78 bits/sec)

had the narrowest range of values for throughput, and dwell-time (range =

7.64 bits/sec, IQR = 2.86 bits/sec) the highest variability based on both

measures among all interaction techniques. The voice recognition (range =

2.043 bits/sec, IQR = 0.63 bits/sec) reached lower variability than mouse655

(range = 2.83 bits/sec, IQR = 0.95 bits/sec) on both measures. However,

both EyeTAP and voice recognition reached lower throughput than dwell-time

on average, dwell-time reached the highest variability due to having a sparse

distribution compared to the other interaction techniques.

Error rates: We found a significant effect of interaction method on error rates660

(F (3, 96) = 27.15, p < .001). A posthoc Bonferroni comparison test showed a

significant difference between mouse (M = 0.01 errors, SE = 0.005 errors)

and all eye tracking interactions (see Figure 6c). In addition, dwell-time (M =

0.28 errors, SE = 0.03 errors) reached a higher error rate than EyeTAP (M =

0.18 errors, SE = 0.02 errors) and voice recognition (M = 0.10 errors, SE =665

0.02 errors).

We also analysed the distribution of errors among users and found that Eye-

TAP (range = 0.66 errors, IQR = 0.16 errors) had a similar range compared

to dwell-time (range = 0.66 errors, IQR = 0.25 errors) but lower variabil-

ity based on the interquartile range measure. The voice recognition technique670

(range = 0.58 errors, IQR = 0.16 errors) showed a narrower range than

EyeTAP but similar variability based on the interquartile range measure. The

mouse (range = 0.08 errors, IQR = 0.00 errors) reached the lowest variability
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based on both measures among all interaction techniques. The voice recog-

nition technique reached the lowest distribution of errors among eye tracking675

techniques based on error rates as illustrated in Figure 6c.

 

(a)

 

(b)

 

(c)

Figure 6: (a) Calculated movement time, (b) throughput, and (c) the error rates per method

for the ribbon-shaped test. For all measures p < .001.

4.5. User Study 4: Circle-shaped Test

This test is similar to the Ribbon-shaped test, however, contains different

target shapes. Figure 7c illustrates the screenshots of this test which contains

uni-variate endpoint deviation (SDx) through X axis and bi-variate endpoint680

deviation (SDx,y) through both X, Y axes for throughput calculations which

results in better Fitts’ law model [62]. The ‘FittsStudy’ application by Wob-

brock et al. [62] was used for this test.

The intuition of this test was to test the interaction techniques based on the

Fitts’ law with circular buttons provided by the ‘FittsStudy’ application [62].685

4.5.1. Stimulus

The stimulus for this test consisted of three circle-shaped buttons to be

selected located in the middle of the screen with random widths and distances

as shown in Figure 7c. The test sessions includes three distances (256, 384, 512)

pixels, and two widths (96, 128) pixels.690
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4.5.2. Measures

The following dependent variables were recorded: movement time, through-

put (with two variations), and error rates for this test.

 

(a)

 

(b)

 

(c)

Figure 7: (a) Shows the Dart-based test stimuli: the accuracy is highest in the green area.

The cross-hair icon indicates the correct eye gaze location, (b) Illustrates the ribbon-shaped

stimuli, and (c) shows the circle-shaped stimuli of the ‘FittsStudy’ application [62]. Targets

highlighted in blue represent active targets to be selected.

4.5.3. Results

A one-way repeated measures ANOVA was performed to examine the effect695

of interaction type on: (1) movement time, (2) throughput and (3) error rates for

each interaction method. This test is similar to ribbon-shaped test but contains

an extra metric to measure throughput of each method.

Movement time: We found a significant effect of the interaction method on

movement time (F(3,96)=67.48, p < .001). A posthoc Bonferroni comparison700

test showed a significant difference between EyeTAP (M = 1578.95 ms, SE =

95.34 ms), dwell-time (M = 638.80 ms, SE = 24.35 ms), voice recognition

(M = 2123.35 ms, SE = 132.42 ms) and mouse (M = 727.91 ms, SE =

46.12 ms). However, there is no statistical difference between mouse (M =

727.91 ms, SE = 46.12 ms) and dwell-time (M = 638.80 ms, SE = 24.35 ms).705

Figure 8a illustrates the mean movement time per method for the circle-shaped

test.

We found that dwell-time (range = 0.62 sec, IQR = 0.15 sec) has the

narrowest, and voice recognition (range = 4.29 sec,IQR = 0.44 sec) the largest
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range. EyeTAP (range = 2.58 sec, IQR = 0.51 sec) showed a narrower range710

than voice recognition but larger interquartile range than voice recognition,

dwell-time and mouse (range = 1.53 sec, IQR = 0.12 sec). This analysis shows

higher consistency for dwell-time compare to the other interaction techniques.

Error rates: We found a significant effect of the interaction method on

error rates (F (3, 96) = 18.25, p < .001). A posthoc Bonferroni comparison715

test showed a significant difference between mouse (M = 0.02 errors, SE =

0.01 errors), dwell-time (M = 0.23 errors, SE = 0.03 errors), voice recogni-

tion (M = 0.13 errors, SE = 0.02 errors) and EyeTAP (M = 0.28 errors,

SE = 0.02 errors). Voice recognition (M = 0.13 errors, SE = 0.02 errors)

reached the lowest error rate among eye tracking methods, however, there is no720

statistical difference between dwell-time (M = 0.23 errors, SE = 0.03 errors)

and EyeTAP (M = 0.28 errors, SE = 0.02 errors). Figure 8b illustrates the

calculated error rates for the circle-shaped test.

We found that mouse (range = 0.58 errors, IQR = 0.0 errors), dwell-

time (range = 0.58 errors, IQR = 0.25 errors), voice recognition (range =725

0.58 errors, IQR = 0.25 errors), and EyeTAP (range = 0.58 errors, IQR =

0.16 errors) showed the same variability based on range measure, but EyeTAP

reached a lower distribution based on the interquartile range among eye tracking

techniques.

Throughput: Since the circle-shaped test contains two variations (uni-variate,730

bi-variate) to measure throughput [62], we ran a two-way repeated measures

ANOVA (throughput × variation) and found a significant effect of the inter-

action method on throughput (F(3,96)=19.75, p < .001). A posthoc Bon-

ferroni comparison test showed a significant difference between mouse (M =

4.16 bits/sec, SE = 0.18 bits/sec), dwell-time (M = 3.20 bits/sec, SE =735

0.25 bits/sec), voice-recognition (M = 1.24 bits/sec, SE = 0.07 bits/sec)

and EyeTAP (M = 1.04 bits/sec, SE = 0.13 bits/sec). However, there is

no statistical difference between voice-recognition (M = 1.24 bits/sec, SE =

0.07 bits/sec) and EyeTAP (M = 1.04 bits/sec, SE = 0.13 bits/sec). Figure

9a shows uni-variations of throughput, and Figure 9b shows the bi-variations of740
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(b)

Figure 8: (a) Calculated movement time, and (b) error rates per method for the circle-shaped

test. For all measures (p < .001).

throughput per interaction method.

We found that dwell-time (range = 6.40 bits/sec, IQR = 2.66 bits/sec)

showed the highest variability among all interaction techniques based on both

measures, range and interquartile range for uni-variation throughput measure.

Whereas, voice recognition (range = 2.50 bits/sec, IQR = 0.55 bits/sec)745

showed the lowest variability. EyeTAP (range = 3.81 bits/sec, IQR = 1.16

bits/sec) showed lower variability than mouse (range = 6.32 bits/sec, IQR =

1.51 bits/sec) on both measures as illustrated in Figure 9a.

We found that dwell-time (range = 4.69 bits/sec, IQR = 2.08 bits/sec) and

mouse (range = 4.91 bits/sec, IQR = 1.11 bits/sec) showed the highest vari-750

ability on both range and interquartile range measures. Whereas voice recog-

nition (range = 1.88 bits/sec, IQR = 0.42 bits/sec) and EyeTAP (range =

2.49 bits/sec, IQR = 0.79 bits/sec) showed lower variability for the bi-variate

throughput measure as illustrated in Figure 9b.

This analysis confirms that EyeTAP has the lowest throughput based on755

mean value, and voice recognition has the lowest distribution (higher consis-

tency) among all interaction techniques for throughput measure based on both

uni-variation and bi-variation of the circle-shaped user study (see Figure 9).
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(c)

Figure 9: (a) Calculated throughput for uni-variate, (b) throughput for bi-variate per method

for the circle-shaped test, and (c) shows the ratings of EyeTAP from 1 (worst) to 5 (best) for

33 participants. For all measures in (a) and (b) (p < .001).

5. Results

5.1. EyeTAP Rating by Users760

We asked participants to evaluate the overall performance of EyeTAP in the

post-test questionnaire on a scale from 1 (worst) to 5 (best). EyeTAP reached

the average rate of 3.64 (SD = 0.99) by 33 users. Figure 9c illustrates the

subjective ratings obtained from the post-test questionnaire.

5.2. NASA TLX Scores765

Figure 10 shows the NASA TLX scores for all interaction methods obtained

during the user study. The overall workload is the average of scale values since

we assume all scales equally important and therefore eliminated the weighting

calculation to apply a simplified version [63] of the basic NASA TLX ratings

[52]. According to our findings, the dwell-time method has the lowest workload770

among other eye tracking techniques. However, EyeTAP shows relatively lower

workload compared to the voice recognition technique.

5.3. Comparative Scores

We analyzed the results of the eye tracking techniques based on (1) the anal-

ysis of variance (ANOVA), and (2) the descriptive statics based on dispersion775

31



 

Figure 10: The NASA TLX scores for the interaction methods. (Left) Comparison of each

method based on different scales. (Right) The overall mean workload of tested interaction

methods. Error bars represent standard error.

of data, as illustrated earlier in this section. Since we measured the interac-

tion techniques based on various criteria, we need to obtain a single measure

comprised of all reviewed measures for comparison. Therefore, we applied a sim-

ple scoring technique and assigned an integer value in the set of {1 (worst), 2

(medium), 3 (best)} to eye tracking techniques based on their performance and780

calculated the arithmetic average for each interaction techniques of the entire

criteria. Furthermore, we assigned the value of 2 (medium) to interaction tech-

niques when they showed statistically similar or very close performance. Table

1 shows the details of this scoring technique for the ANOVA-based measures,

and Table 2 contains the details of dispersion analysis scoring. The higher the785

calculated average score shows the better performance of the entire measures.

Figure 11a illustrates the results of Table 1 and Figure 11b shows the cal-

culated average of both measures (range and IQR measures) of Table 2. The

dwell-time reached the highest score (the best performance) based on the av-

erage value of objective measures of our user studies, although the difference790

between voice recognition and EyeTAP is not significant. However, EyeTAP

and voice recognition reached relatively higher scores (higher consistency) than

the dwell-time method based on dispersion analysis, however, the differences are

not statistically significant. We showed that dwell-time performs very well for

some participants, but shows sparse distribution on some criteria. Furthermore,795
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EyeTAP may be considered as an interaction technique that has potential for

improvement and can be adapted for most participants with sufficient training.

 

(a)

 

(b)

Figure 11: (a) Calculated scores from 1 (worst) to 3 (best) on all objective measures for eye

tracking techniques shown in Table 1. The dwell-time method shows the highest scores based

on ANOVA analysis results. (b) The calculated scores of average of both dispersion analysis

results (range and IQR measures) shown in Table 2. Higher scores are better in both figures.

6. Discussion

Regarding the experiments with the reviewed Midas touch solutions, we

found several benefits and disadvantages of each method. We discuss each800

method individually.

6.1. EyeTAP

We found several benefits of using EyeTAP in comparison to the other inter-

action techniques. First of all, it has no dependent features, rather it requires

only an acoustic pulse (making a sound) near a microphone to send a signal.805

In fact, the output of EyeTAP in a noisy environment can appear determin-

istic after a number of repetitions. According to the results of our study, it

achieved faster completion time in the matrix-based test, and faster movement

time in the circle-shaped test than voice recognition. In addition, it showed

a similar path cost (pointer footprint on display) with the other eye tracking810

techniques. It also achieved lower cognitive workload in comparison to the voice
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Mean Values

Criteria Dwell Voice EyeTAP

Comp. Time 3 1 2

(1.40) (3.20) (2.57)

Path Costs 2 2 2

(76.73) (82.03) (84.80)

Distance 2 3 1

(35.30) (29.27) (45.11)

MTRibbon 3 1 2

(0.59) (2.01) (1.79)

TPRibbon 3 2 2

(3.30) (1.15) (1.15)

ERRibbon 1 3 2

(0.28) (0.10) (0.18)

MTCircle 3 1 2

(0.63) (2.12) (1.57)

TPCircle−uni 3 2 2

(3.90) (1.48) (1.24)

TPCircle−bi 3 2 2

(2.50) (1.00) (0.84)

ERCircle 2 3 2

(0.23) (0.13) (0.28)

Average 2.50 2.00 1.90

Table 1: Summary of scores per interaction techniques based on comparison of their mean

values. Scores are integer values from 1 (worst) to 3 (best). Statistically similar mean values

(p > .05) were assigned the value of 2. Values represented in parenthesis denote the mean

values of each measure. MT, TP, and ER represent movement time, throughput, and error

rates.
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R IQR

Criteria Dwell Voice EyeTAP Dwell Voice EyeTAP

Comp. Time 3 2 1 3 1 2

(1.80) (7.71) (8.69) (0.84) (1.39) (0.90)

Path Costs 1 2 3 1 2 3

(126.81) (111.11) (88.88) (43.13) (29.91) (22.76)

Distance 2 3 1 2 3 1

(48.96) (42.05) (59.62) (17.91) (15.87) (19.42)

MTRibbon 3 2 1 3 2 1

(0.42) (2.03) (5.67) (0.09) (0.37) (0.69)

TPRibbon 1 3 2 1 3 2

(7.64) (2.04) (2.73) (2.86) (0.63) (0.78)

ERRibbon 2 3 2 1 2 2

(0.66) (0.58) (0.66) (0.25) (0.16) (0.16)

MTCircle 3 1 2 3 2 1

(0.62) (4.29) (2.58) (0.15) (0.44) (0.51)

TPCircle−uni 1 3 2 1 3 2

(6.40) (2.50) (3.81) (2.66) (0.55) (1.16)

TPCircle−bi 1 3 2 1 3 2

(4.69) (1.88) (2.49) (2.08) (0.42) (0.79)

ERCircle 2 2 2 2 2 3

(0.58) (0.58) (0.58) (0.25) (0.25) (0.16)

Average 1.90 2.40 1.80 1.80 2.30 1.90

Table 2: Summary of scores per interaction techniques based on comparison of dispersion on

both measures (1) range (R), and (2) interquartile range (IQR) values. Scores are integer

values from 1 (worst) to 3 (best). We assigned value of 2 for similar mean values. Values rep-

resented in parenthesis denote the actual values of each measure. MT, TP, and ER represent

movement time, throughput, and error rates.
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recognition technique. Furthermore, EyeTAP was a popular choice of interac-

tion (36.4%) compared to voice recognition (9.1%). However, EyeTAP showed

relatively lower accuracy and higher error rates than voice recognition, perhaps

due to the fact most users had no prior experiences with this kind of interac-815

tion. Suggesting that with more training the performance of EyeTAP could be

improved.

EyeTAP achieved the lowest variability for path cost of pointer movements

on screen for the matrix-based test. In addition, it showed lower variability

than dwell-time and mouse on throughput measures of both ribbon-shaped and820

circle-shaped test. The low variability of EyeTAP reflects the predictability

of its performance on subjects, thus this method can be adopted for different

users or different case scenarios. In general, EyeTAP allows for point-and-select

interaction because it separates the actions of pointing and selecting to two dif-

ferent modalities while relaxing the requirement for accurate voice recognition.825

The results of our user study demonstrate that EyeTAP is a feasible alterna-

tive interaction technique. Moreover, it is a viable and effective solution to the

Midas touch problem for eye tracking platforms and can be regarded as an al-

ternative to voice recognition technique. EyeTAP showed the similar dispersion

on average based on both measures range, and interquartile range (IQR) with830

dwell-time as shown in Table 2 and Figure 11b.

However, the range of activation threshold for the dwell-time method is

reported in the range of (300-1100 ms) in the literature [54]. Compared to a

500 ms dwell-time, EyeTAP showed acceptable results. To our surprise however,

EyeTAP did not generally outperform dwell-time in terms of either time or er-835

rors. This may suggest that a well-tuned dwell-time method even on commercial

hardware components does not suffer greatly from the Midas touch problem.

EyeTAP showed a lower error rate than the dwell-time in the ribbon-shaped

test (see Figure 6c) with relatively large targets. We posit that with larger size

targets, the eyes to move around the target causing the dwell-time method to840

have more errors. Conversely, target size should not impact EyeTAP as much,

as the selection is multimodal so as soon as the eye is on target the user can
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confirm the selection with a sound. These features caused the reduction of

wrong selections by users to select relatively large targets in a left-right shift of

movements applying the EyeTAP technique. In contrast, selecting smaller-sized845

targets in different orientations on the screen (360 degrees) of the circle-shaped

test (see Figure 7c) caused a larger number of errors for EyeTAP compared to

dwell-time and voice recognition. These show that EyeTAP is more suitable

to select larger targets with eye movements in opposite directions (left-right,

up-down) based on error rates.850

EyeTAP is an effective and robust alternative to previous gaze-based inter-

action techniques. It may be more robust than voice-based techniques and cause

less fatigue than the dwell-time method. Based on our study results, we believe

it would be particularly useful when there is ambient noise, or users feel uncom-

fortable speaking out loud, such as the case in a communal workplace.EyeTAP855

showed a lower variability than the voice recognition technique, and a compa-

rable variability to the dwell-time technique based on dispersion analysis (see

Figure 11b) when applied on participants which is beneficial to apply EyeTAP

on different users.

Another advantage of EyeTAP relies on its dual-purpose applications for860

able-bodied and severely disabled users who may not use a voice recognition

engine to send their commands and has also difficulties using a dwell-time tech-

nique for their basic interaction needs.

Finally, the interesting advantage of EyeTAP lies in its fundamental audi-

tory technique which is based on the Morse code [47] which enables a series of865

commands based on binary input variables. This feature provides an extension

of new commands from simple to complex functionalities which offers a design

flexibility for future applications and case scenarios. Although currently, Eye-

TAP is designed for selection tasks only, its functionalities can be extended.

EyeTAP can be considered as a competitive alternative to speech recognition870

techniques for selection tasks. Furthermore, when users are uncomfortable using

a mouth sound (and having the physical capacity to do so), they can tap the

microphone to initiate the required acoustic pulse for selection.
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6.2. Voice Recognition

This interaction method showed relatively acceptable results but suffers from875

some limitations. In general, a voice recognition engine depends on the user’s

voice, gender, language, and accent. Additionally, it is not applicable to users

with speech impediments. Another drawback is the need of prior training sam-

ples to detect words correctly. Furthermore, similar words may lead to false

recognition as we experienced during our user study. The quality of the micro-880

phone and its distance to the user is also another factor to be considered for

this kind of interaction. Regarding the accuracy of recognition, the choice of

recognition software plays an important role. Finally, speaking commands out

loud may not be suitable in certain working environments.

In general, voice recognition presented some challenges for the users in terms885

of wrongly recognized words, need for action word repetition, and delay between

input and feedback. The subjects’ rating of this technique was very low (9.1%)

in our user study. Voice recognition showed the highest completion time in

the matrix-based test and highest movement time in the circle-shaped test and

reached the highest cognitive workload among all interaction techniques.890

The lowest error rates in both Fitts’ studies reflect that the voice recognition

technique is easier to control than EyeTAP and dwell-time to select targets

(see Figures 6c and 8b). Voice recognition had the highest selection accuracy

measured by the dart-based test. This suggests that it may be a well-suited

interaction technique when on small screens and/or with small-sized targets. In895

addition, the voice recognition technique reached the lowest variability based on

our dispersion analysis on distance to target (as shown in Figure 4c and Table

2), and throughput measures (shown in Figures 6b, 9a, and 9b and Table 2)

among all eye tracking techniques. The voice recognition technique achieved

the highest score based on dispersion analysis as shown in Table 2, and Figure900

11b. These show its adaptability on different users which is a useful feature to

apply it on a larger population with a predictable performance for suitable case

scenarios.

Beelders et al. stated that using the dwell-time technique should be more
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efficient than speech commands [39]. However, we have shown that speech com-905

mands have better performance for error rates (see Figures 6c, 8b), selection

accuracy (see Figure 4c), and higher consistency on users based on dispersion

analysis (see Figure 11b). Zhao et al. experienced issues with their voice recog-

nition engine such as speaking words loudly [41], we also had the same difficulties

in our experiments. This is one of the challenges of voice recognition engines.910

6.3. Dwell-Time

The dwell-time method showed the fastest completion time in the matrix-

based test, and fastest movement time and highest throughput in both Fitts’

experiments due to the low amount of activation time (500 ms). In addition,

it reached the lowest amount of cognitive workload. However, it showed the915

highest error rates in the ribbon-shaped test and with EyeTAP in the circle-

shaped test. Moreover, some users complained about eye fatigue after a while

during test sessions. Since the dwell-time method relies on the activation time,

any changes may produce different results.

We believe that the reason for faster completion time for dwell-time relates920

to the fact that it has a singular activation function which demands significantly

lower cognitive workload (see Figure 10) to select targets at different locations,

whereas the multimodal technique relies on mental coordination between both

modalities to point and select a target. We posit that the synchronization of

these modalities was a major factor in dwell-time outperforming the EyeTAP925

technique on most measures.

The dwell-time technique showed the lowest variability on task completion

time and movement time measures among all eye tracking techniques, but the

highest variability on path cost of target selection, throughput of both ribbon-

shaped and circle-shaped tests and the highest variability on error rates of the930

ribbon-shaped test. This method reached similar variability as EyeTAP based

on both measures range, and interquartile range (IQR) as shown in Table 2

and Figure 11b. Except the high error rates for the dwell-time method, it has

been shown to be comparable with the mouse interaction for target selections
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in our studies which makes it still a superb eye tracking interaction technique.935

However, the EyeTAP technique showed competitive performance compared to

the voice recognition technique with promising results. Pfeuffer et al. found the

dwell-time the fastest technique in their study [9]. We confirm their findings

regarding the completion time in our user studies for the dwell-time technique.

However, they found dwell-time eye tiring and the least favorable technique by940

users due to relatively high activation time (1 sec). In contrast, we found the

lowest workload for the dwell-time based on the NASA TLX scores (see Figure

10) but had similar feedback about eye fatigue. Since we employed half of the

activation threshold used in Pfeuffer et al.’s experiment, dwell-time was found

to be the easiest and fastest technique among eye tracking techniques in our945

user studies. In another work for head mounted displays (HMDs), Esteves et

al. found a dwell-time of 400 ms a faster interaction technique than applying

a clicker and speech commands [37]. We confirm their findings based on our

user studies’ results. Moreover, they found the dwell-time and clicker the most

popular interaction techniques by users. We found relatively high error rates for950

dwell-time in our studies. Esteves et al. showed that increasing the activation

threshold for dwell-time (400 ms to 1 sec) can decrease error rates to zero. These

confirm that the choice of activation threshold is a key factor in applying the

dwell-time method which is a trade-off between performance and error rates.

Miniotas et al. applied a dwell-time of 1500 ms in their experiments and955

showed the lowest error rate for that threshold [38]. However, although increas-

ing the dwell-time may reduce error rates, it may also cause eye fatigue as we

experienced in our user studies, especially during long-time sessions. The dwell-

time method with 500 ms threshold is regarded as the best performing version

of dwell-time [55].960

6.4. The Mouse

We applied the mouse interaction as a baseline technique for comparison with

the gaze-based techniques. Overall, we found higher performance for mouse

interaction, however, it showed higher pointer movements on the screen (see
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Figure 4b) than eye tracking techniques. Beelders et al. found that mouse965

interaction has significantly higher performance than eye tracking techniques in

the case of throughput and completion time. We confirm these findings, however

we also found that in the case of completion time, the dwell-time technique

reached similar performance (see Figures 6a, 8a). These show the potentials of

a fine-tuned dwell-time technique as an alternative for the mouse.970

7. Conclusion and Future Work

In this paper, we proposed EyeTAP (Eye tracking point-and-select by Tar-

geted Acoustic Pulse), an eye tracking interface that addresses the Midas touch

problem with acoustic input detection capabilities. The performance of the pro-

totype was measured in four user studies with 33 participants based on eight975

criteria: (1) completion time, (2) path cost of target selection, (3) error rate, (4)

error locations on screen, (5) accuracy of target selection, (6) movement time,

(7) throughput, and (8) cognitive workload.

In addition, we performed a statistical analysis based on (1) variance, and

(2) dispersion of data. The results of our user studies showed that the dwell-time980

method outperformed other eye tracking techniques, including EyeTAP on most

criteria based on an analysis of variance (ANOVA), but suffers from a high level

of distribution on some criteria. At the same time we found that EyeTAP, in

comparison to the other tested methods provides a faster task completion time,

faster movement time and lower workload than voice recognition. In addition,985

EyeTAP showed similar performance compared to the dwell-time method and

a lower error rate in the ribbon-shaped test.

Moreover, our study showed that eye tracking has a lower footprint (eye

gaze mapped with mouse pointer) on the screen compared to a mouse pointer

in time scale. Additionally, we confirmed that center regions towards the right990

and bottom side of the screen are more error prone than the left and top sides.

Finally, we developed two user tests (Matrix-based, and Dart-based tests) that

would be effective in studying different target selection in gaze-based interaction
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techniques.

Although we only developed the left mouse click event, EyeTAP demon-995

strates a completely contact-free alternative to mouse interaction for users with

disabilities and users who need to avoid physical contact with input devices

considering their workplace or situation. Thus, we believe EyeTAP can be re-

garded as a competitive technique to both dwell-time, specifically in cases where

users may experience physical disabilities or restrictions, and voice recognition,1000

particularly when dealing in workplaces, accents or speech disabilities. EyeTAP

showed a higher consistency (lower variability) based on the dispersion analy-

sis, thus it may be more easily accessible to a larger diverse population (e.g.

children, users with disabilities, and elderly users).

The global outbreak of COVID-19 showed the importance of contact-free1005

interactions, specifically in public places and for healthcare personnel. The po-

tential of EyeTAP can be considered on public devices such as ATM machines

and self check-in platforms at airports. We hope, that EyeTAP inspires re-

searchers into developing contact-free interaction techniques for emerging case

scenarios and equipment. In future work, we will apply the EyeTAP technique1010

on AR/VR headsets to measure its usability in different case scenarios for able-

bodied and participants with motor disabilities.
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