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a b s t r a c t

In this work we present a novel vision-based system for automatic detection and extraction of complex
road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR.
Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping
theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using
graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection
and classification.
Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting

to produce accurate classification of the geospatial features. In addition, the tensorial representation
used for the encoding of the data eliminates the need for any thresholds, therefore removing any data
dependencies.
Secondly, a novel orientation-based segmentation is presented which incorporates the classification

of the perceptual grouping, and results in segmentations with better defined boundaries and continuous
linear segments.
Finally, a set of gaussian-based filters are applied to automatically extract centerline information

(magnitude, width and orientation). This information is then used for creating road segments and
transforming them to their polygonal representations.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Recent technological advancements have caused a significant
increase in the amount of remote sensor data and of their uses in
various applications. Efficient and inexpensive techniques in the
area of data acquisition have popularized the use of remote sen-
sor data and led to their widespread availability. However, the in-
terpretation and analysis of such data still remains a difficult and
manual task. Specifically in the area of road mapping, traditional
methods require time-consuming and tediousmanual workwhich
does not meet the increasing demands and requirements of cur-
rent applications. Although considerable attention has been given
on the development of automatic road extraction techniques it still
remains a challenging problem due to the wide variations of roads
(urban, rural, etc) and the complexities of their environments (oc-
clusions due to cars, trees, buildings, etc).
In this work we focus on the automatic and reliable detec-

tion and extraction of transportation networks from remote sen-
sor data including aerial photographs, satellite images, and LiDAR.
We present an integrated solution that merges the strengths of
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perceptual grouping theory (Gabor filters, tensor voting) and seg-
mentation (global optimization by graph-cuts), under a unified
framework to address the challenging problem of automated fea-
ture detection, classification and extraction. The proposed ap-
proach leverages the multi-scale, multi-orientation capabilities of
Gabor filters for the inference of geospatial features, the effective
and robust handling of noisy, incomplete data of tensor voting for
the feature classification and the fast and efficient optimization of
graph-cuts for the segmentation and labeling of road features.

2. Related work

A plethora of work has been proposed for solving the com-
plex problemof extracting road networks from remote sensor data.
Almost all of the existing work shares similar processing pipeline
and relies on the combination of pixel-based, region-based and
knowledge-based techniques. However, several distinctions ex-
ist between the different processing components. Below is an
overview of the state-of-the-art in this area. Mayer et al. (2006)
offers a comprehensive survey on the state-of-the-art road extrac-
tion techniques from a variety of different datasets.
In Baumgartner et al. (1999) lines are extracted in an imagewith

reduced resolution as well as road-side edges in the original high
resolution image. Using both resolution levels and explicit knowl-
edge about roads, hypotheses for road segments are generated and
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are grouped iteratively into larger segments. Although the results
seem promising, the proposed method is focused on extracting
road networks for rural areas.
Lisini et al. (2004) presents a system which relies on adaptive

filtering to determine predominant orientations of the roads. The
response of the filtering is then used to extract linear segments
which are then connected based on tolerances determined by the
spatial resolutions. This approach relies on various hard thresholds
and data-dependent parameters thus requires considerable user
interaction to tune the parameters prior to processing the data.
A different approach which tries to reduce the number of

tunable parameters is presented in Laptev et al. (2000). The authors
propose the integration of the well-established techniques of
multi-scale image processing and active contour models to resolve
the complex problem of road extraction. They use a multi-scale
ridge detector for the detection of lines at a coarser scale, and then
use a local edge detector at a finer scale for the extraction of parallel
edges which are optimized using a variation of the active contour
models technique (snakes). The results indicate that the approach
performs very well especially for rural areas.
Similarly,Wessel (2004) employs Steger’s differential geometry

approach (Mayer and Steger, 1998) for the extraction of linear
segments. Context information about road networks is then used
to connect the linear segments into roads. Steger’s differential
geometry approach is also employed in Bacher and Mayer (2005)
for the extraction of linear segments from multi-spectral images.
The extracted lines are then used for training through an automatic
supervised classification to produce a road class image which can
be used to verify road hypotheses. The approach has been shown
to perform well on rural areas only.
The authors in Barsi and Heipke (2003) present an approach for

extracting road junctions. To achieve this they train a feed-forward
artificial neural network to learn a junction model which supports
junctions of up to four arms. The training is performed interactively
and the junctions are extracted using a Deriche operator for the
edge detection with an added hysteresis threshold, followed by an
edge smoothing using the Ramer algorithm. Although the result is
not a complete road network the approach seems to perform very
well for rural areas.
The system in Zhang et al. (2001) integrates knowledge process-

ing of color image data and information from digital geographic
databases, extracts and fuses multiple object cues, thus takes into
account context information, employs existing knowledge, rules
and models, and treats each road subclass accordingly. Clode et al.
(2005) uses a rule-based algorithm for the detection of buildings at
a first stage and then at a second stage the reflectance properties of
the road. Similarly, Zhang and Couloigner (2006) uses reflectance
as a measure for the image segmentation and clustering. Explicit
knowledge about geometric and radiometric properties of roads
is used in Wessel (2004) to construct road segments from the hy-
potheses of road-sides. In Barsi and Heipke (2003) the developed
system can detect a variety of road junctions using a feed-forward
neural network, which requires collected data for the training of
the network. Peteri et al. (2003) take high resolution images as in-
put along with prior knowledge about the roads e.g. road models
and road properties.
In Porikli (2003) the authors present an approach based on

point-wise Gaussian models. A set of quadruple line filters is ap-
plied on the image to extract linear segments. Additionally, road
points which are not perceptible by the line filters are enhanced
using the likelihood of each image point as being part of a road.
The results are impressive however, this approach only deals with
images where the roads appear as thin linear features and have no
width.
A method which relies on elevation data is presented in Clode

et al. (2005). LiDAR data provides accurate elevation information
which can be used to resolve problems occurring using optical
imagery such as road overlaps due to bridges. A region growing
algorithm is used to segment the road segments from other points
in the data such as buildings, trees, etc. The road candidates
are then vectorized using a phase-coded disk which allows the
extraction of roads of different widths and different orientations.
The importance of scale-space processing is described in the

work of Mayer and Steger (1998). Building on similar concepts,
the authors in Heller and Pakzad (2005) present a concept to auto-
matically adapt road models for high resolution images to models
appropriate for images of lower resolution with similar spec-
tral characteristics. Additionally, in Heuwold (2006) the author
presents a framework for the verification of the automatic adapta-
tion of object models consisting of parallel line-type objects parts
to a lower image resolution. Similarly, in Hinz and Baumgartner
(2003) the authors present an automatic road extraction technique
by integrating detailed knowledge about roads and their context
using explicitly formulated scale-dependentmodels. A slightly dif-
ferent approach which combines a scale-space processing frame-
work with the introduction of Markov random fields is presented
in Tupin et al. (2002).
On a different note, the authors in Mena and Malpica (2005)

present an automaticmethod for road extractionwhich uses a new
technique, named Texture Progressive Analysis and consists of a
fusion of information streaming from three different sources for
the image. The approach was successfully applied on rural as well
as semi-urban areas with successful results.
Zhou et al. (2007) present a user-guided image interpretation

system which integrates inputs from human experts with compu-
tational algorithms in order to learn road tracking. Although the re-
sults seem promising, the goal of completely eliminating the need
for human intervention and interactions is still not achieved.
An approach which combines a line-based road extraction and

area-based color segmentation techniques is presented in Ziems
et al. (2007). They show that the incorporation of prior information
into the line-based road extraction algorithm allows the robust
estimation and automatic tune-up of parameters that control the
contrast between road and background, the homogeneity within
the road objects and the global threshold formasking out non-road
areas.
The aforementioned work clearly indicates that the predom-

inant approach for addressing the complex problem of road ex-
traction involves the multi-scale processing of the input data. In
addition to the scale-space processing, an imperative part of road
extraction systems is the elimination of data-dependent parame-
ters since this directly affects the applicability of the system. Al-
though very impressive and promising results have already been
reported as mentioned above, the majority of the existing work in
the area focuses on particular types of datasets (i.e. LiDAR or satel-
lite images) and/or particular types of scenes (i.e. rural, urban, for-
est, etc). The result is road extraction systems which perform well
for one type but fail for another unless numerous parameters are
fine-tuned.
Hence, the goal of our work is to design and develop a system

which relies on well-established computer vision techniques,
incorporates scale-space processing, requires no (or minimal and
stable) parameter tuning and can simultaneously process various
remote sensor data such as LiDAR, intensity response and sate-
llite imagery. The solution to these problems is sought in the
development of a novel system which combines the strengths
of perceptual grouping (Gabor filters, Tensor Voting) and global
optimization (Graph-Cuts) for the geospatial feature inference
and classification. As a result, the proposed system has no data
dependencies and requiresminimal parameters whichwere found
to be stable and remain fixed for all the examples presented (scale
factor for the Tensor voting, number of labels and smoothness
factor for the optimization). The results shown in Section 7 indicate
the high success rate of our system on all types of datasets and
scenes, and verify the validity of the approach.
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Fig. 1. System overview.

3. System overview

Although many different approaches have been proposed and
developed for the automatic extraction of road networks, it still
remains a challenging problem due to the wide variations of roads
e.g. urban, rural, mountainous etc and the complexities of their
environments e.g. occlusions due to cars, trees, buildings, shadows
etc. For this reason, traditional techniques such as pixel- and
region-based have several problems and often fail when dealing
with complex road networks. Our proposed approach addresses
these problems and provides solutions to the difficult problem of
automatic road extraction. Fig. 1 summarizes our approach.
Firstly, geospatial feature inference and classification. Local ori-

entation information is extracted using a bank of Gabor filters,
which is encoded into a tensorial representation. This represen-
tation can simultaneously capture the geometric information of
multiple feature types passing through a point (surface, curve,
junction) and an associated measure of the likelihood of that point
being part of each type. A tensor voting is then performed which
globally communicates and refines the information carried at each
point. An important advantage of combining Gabor filters and ten-
sor voting for the classification is that it eliminates the need for
hard thresholds. Instead, the refined likelihoods of each point give
an accurate estimate of the dominant feature passing through that
point, and are therefore used for the classification into curve and
junction features. Furthermore, it removes the limitation of tensor
voting towork only with binary images and extends its application
to grayscale images.
Secondly, road feature segmentation and labeling. A novel

orientation-based segmentation using graph-cuts is performed. An
important aspect of this segmentation is that it incorporates the
orientation information of the classified curve features and favors
towards keeping those curves connected. The result is a binary
segmentation into road and non-road candidates.
Finally, road network extraction and modeling. A pair of

gaussian-based bi-modal and single mode kernels are developed
for the automatic detection of road centerlines and the extraction
of width and orientation information from the segmented road
candidates. Linear segments resulting from the application of an
iterative Hough transform on the road centerlines, are validated
and refined (merge, split, approximate, smooth). Using the auto-
matically extracted width and orientation information, a tracking
algorithm converts the refined linear segments into their equiva-
lent polygonal representations.

4. Geospatial feature inference and classification

4.1. Gabor filtering

A2DGabor function g(x, y) in spatial frequency domain is given
by,

g(x, y) = c(x, y)× e(x, y) (1)

where c(x, y) is a complex sinusoidal, known as the carrier, and
e(x, y) is a 2D Gaussian function, known as the envelope.
The complex sinusoidal carrier is defined as,

c(x, y) = ej(2π(u0x+v0y)+φ) (2)

where (u0, v0) is the spatial frequency and φ is the phase of the
sinusoidal. The spatial frequency can also be expressed in polar
coordinates as magnitude F0 and direction ω0. The 2D Gaussian
envelope is defined as,

e(x, y) = Ae(−π(s
2
x (x−x0)

2
ϑ+s

2
y (y−y0)

2
ϑ )) (3)

where A is a scale of the magnitude, (sx, sy) are scale factors for the
axes, (x0, y0) is the peak coordinates and ϑ is the rotation angle.
An attractive characteristic of the Gabor filters is their ability to

tune at different orientations and frequencies. Thus by fine-tuning
the filters we can extract high-frequency oriented information
such as discontinuities and ignore the low-frequency clutter.
We employ a bank of Gabor filters tuned at 8 different orienta-

tions θ linearly varying from 0 ≤ θ < π , and at 5 different high
frequencies (per orientation) to account for multi-scale analysis.
The remaining parameters of the filters in Eq. (3) are computed as
functions of the orientation and frequency parameters as in Man-
junath and Ma (1996).
The application of the bank of Gabor filters results in a total of

40 response images (8 orientations ×5 frequencies) as shown in
the Table 1. The response images corresponding to filters of the
same orientation and different frequency are added together. The
result is a single response image per orientation (total of 8) which
is then encoded using a tensorial representation as explained
in Section 4.2.

4.2. Tensor voting

Tensor voting is a perceptual grouping and segmentation
framework introduced by Medioni et al. (2000). A key data rep-
resentation based on tensor calculus is used to encode the data. A
point x ∈ R3 is encoded as a second-order symmetric tensor T and
is defined as,

T =
[
Ee1 Ee2 Ee3

] [λ1 0 0
0 λ2 0
0 0 λ3

]Ee
T
1

EeT2
EeT3

 (4)

T = λ1Ee1EeT1 + λ2Ee2Ee
T
2 + λ3Ee3Ee

T
3 (5)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are eigenvalues, and Ee1, Ee2, Ee3
are the eigenvectors corresponding to λ1, λ2, λ3 respectively. By
applying the spectrum theorem, the tensor T in Eq. (5) can be ex-
pressed as a linear combination of three basis tensors (ball, plate
and stick) as in Eq. (6).
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Table 1
Gabor filters are applied at 8 different orientations and 5 different high frequencies. Output images of the same orientation (and varying frequency) are grouped together
resulting in a total of 8 images (one for each orientation) as shown in the last column. Similarly, the 8 images can then be grouped together resulting in a single image
depicting the detected edges.
a

b

Fig. 2. (a) Tensor decomposition into the stick, plate and ball basis tensors in 3D. (b) Votes cast by a stick tensor located at the origin O. C is the center of the osculating
circle passing through points P and O.
T = (λ1 − λ2)Ee1EeT1 + (λ2 − λ3)(Ee1Ee
T
1 + Ee2Ee

T
2)

+ λ3(Ee1EeT1 + Ee2Ee
T
2 + Ee3Ee

T
3). (6)

In Eq. (6), (Ee1EeT1) describes a stick (surface) with associated saliency
(λ1−λ2) and normal orientation Ee1, (Ee1EeT1+Ee2Ee

T
2) describes a plate

(curve) with associated saliency (λ2− λ3) and tangent orientation
Ee3, and (Ee1EeT1 + Ee2Ee

T
2 + Ee3Ee

T
3) describes a ball (junction) with as-

sociated saliency λ3 and no orientation preference. The geometric
interpretation of tensor decomposition is shown in Fig. 2(a).
An important advantage of using such a tensorial representa-
tion is its ability to capture the geometric information for multiple
feature types (junction, curve, surface) and a saliency, or likelihood,
associated with each feature type passing through a point.
Every point (x, y) in the Gabor filter response images computed

previously is encoded using Eq. (4) into a unit plate tensor (rep-
resenting a curve) with the orientation Ee3 aligned to each filter’s
Gi orientation and is scaled by the magnitude of the response of
that point (Gi⊗ I)x,y. The resulting eight tensors for each point are
then added togetherwhich produces a single tensor T(x,y) per point
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Fig. 3. (a) Successful handling of discontinuities. Before (left) and after (right) the tensor voting process. (b) Original image of CopperMountain area in Colorado. (c) Saliency
map indicating the refined likelihoods produced by the tensor voting. Green indicates curve-ness (λ2 − λ3), blue indicates junction-ness (λ3). (d) Classified curve features
derived from 3(c). Note that no thresholds were used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
capturing the local geometric information and is given by,

Tgabor =
8∑
i=0

((Gi ⊗ I)x,y ∗ Tx,y,i). (7)

Using the tensor decomposition Eq. (6), all pixels for which
(λ2 − λ3) > λ3 are classified as part of curves with tangent
orientation Ee3. Similarly all pixels for which λ3 > (λ2 − λ3) are
classified as junction points with no orientation preference.
For example, if a point pc lies along a curve in the original

image its highest response will be at the Gabor filter with a
similar orientation as the direction of the curve. Encoding the eight
responses of pixel pc as unit plate tensors, scaling them with the
point’s response magnitudes and adding them together results in
a tensor where (λ2 − λ3) > (λ1 − λ2), (λ2 − λ3) > λ3 and the
orientation Ee3 is aligned to the direction of the curve i.e. a plate
tensor. Similarly a tensor representing a point pj which is part of a
junction will have λ3 > (λ2−λ3), λ3 > (λ2−λ3) i.e. a ball tensor.
The encoded points then cast a vote to their neighboring points

which lie inside their voting fields, thus propagating and refining
the information they carry. The strength of each vote decays with
increasing distance and curvature as specified by each point’s stick,
plate and ball voting fields. The three voting fields can be derived
directly from the saliency decay function (Guy and Medioni, 1997)
given by

DF(s, κ, σ ) = e
−

(
s2+cκ2

σ2

)
(8)

where s is the arc length of OP, κ is the curvature, c is a constant
which controls the decay with high curvature (and is a function of
σ ), and σ is a scale factor which defines the neighborhood size as
shown in Fig. 2(b). The blue arrows at point P indicate the two types
of votes it receives from point O: (1) a second-order vote which is a
second-order tensor that indicates the preferred orientation at the
receiver according to the voter and (2) a first-order vote which is a
first-order tensor (i.e. a vector) that points toward the voter along
the smooth path connecting the voter and receiver. The scale factor
σ is the only free variable in the framework.
After the tensor voting the refined information is analyzed and

used to classify the points as curve or junction features. An example
of a mountainous area with curvy roads is shown in Fig. 3(b). A
saliency map indicating the likelihood of each point as being part
of a curve (green) and a junction (blue) is shown in Fig. 3(c). The
saliencymap is used for the classification of the curve pointswhich
are shown in Fig. 3(d). A point with (λ2 − λ3) > λ3 is classified as
a curve point and a point with λ3 > (λ2 − λ3) is classified as a
junction point. Intuitively, a greener point is a curve and a bluer
point is a junction.
A key advantage of combining the Gabor filtering and tensor

voting is that it eliminates the need for any thresholds therefore
removing any data dependencies. The local precision of the Gabor
filters is used to derive information which is directly encoded
into tensors. The tensors are then used as an initial estimate for
global context refinement using tensor voting and the points are
classified based on the their likelihoods of being part of a feature
type. This unique characteristic makes the process invariant to
the type of images being processed. In addition, the global nature
of tensor voting makes it an ideal choice when dealing with
noisy, incomplete and complicated images and results in highly
accurate estimates about the image features. This is demonstrated
in Fig. 3(a) where the original image shows a polygon with many
gaps of different sizes in white and the recovered, classified
curve points are shown in yellow. As it can be seen most of the
discontinuities were successfully and accurately recovered.
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5. Road feature segmentation and labeling

The classification of tensor voting provides an accuratemeasure
of the type of each feature i.e. junctions and curves. However, these
features result from the presence of roads aswell as buildings, cars,
trees, etc. A segmentation process is performed to segment only
the road features from the classified curve features. The geometric
structure of the curve features combined with color information
extracted from the image, is used to guide an orientation-based
segmentation using optimization by graph-cuts which produces a
labeling of road and non-road candidates.

5.1. Labels

The binary label case of graph-cuts described in Appendix, can
easily be extended to a case of multiple terminal vertices. We cre-
ate two terminal vertices for foregroundO and background B pixels
for each orientation θ for which 0 ≤ θ ≤ π . In our experiments,
we have found that choosing the number of orientation labels in
the range 2 ≤ Nθ ≤ 16 generates acceptable results. Thus the set
of labels L is defined to be L = {Oθ1 , Bθ1 ,Oθ2 , Bθ2 . . . ,OθNθ , BθNθ }
with size |L| = 2 ∗ Nθ .

5.2. Energy minimization function

Finding the minimum cut of a graph is equivalent to finding
an optimal labeling f : Ip −→ L which assigns a label l ∈ L
to each pixel p ∈ I where f is piecewise smooth and consistent
with the original data. Thus, our energy function for the graph-cut
minimization is given by

E(f ) = Edata(f )+ λ ∗ Esmooth(f ) (9)

where λ is the weight of the smoothness term.
Energy data term. The data term provides a per-pixel measure of
how appropriate a label l ∈ L is, for a pixel p ∈ I in the observed
data and is given by,

Edata(f ) =
∑
p∈I

Dp(f (p)). (10)

As in Boykov et al. (2001), the initial seed points are used twice:

(1) To compute an intensity distribution (in our case color dis-
tribution using gaussian mixture models) for the background
and foreground pixels. A measure of how appropriate a label-
ing is, is then given by computing the negative log-likelihood
i.e.− ln(P(Ip|f (p))).

(2) To encode the hard constraints for the segmentation. Fore-
ground and background pixels are assigned the lowest and
highest value of the function Dp(f (p)), respectively. For all
other pixels, Dp is computed as,

Dp(f (p)) =
1− ln(P(Ip|f (p)))
2− ‖θp − θf (p)‖2

. (11)

The energy data term then becomes,

Edata(f ) =
∑
p∈I

(
1− ln(P(Ip|f (p)))
2− ‖θp − θf (p)‖2

)
. (12)

Energy smoothness term. The smoothness term provides a measure
of the difference between two neighboring pixels p, q ∈ I with
labels lp, lq ∈ L respectively. Let Ip and Iq be the intensity values
in the observed data of the pixels p, q ∈ I respectively. Similarly,
let θp and θq be the initial orientations for the two pixels recovered
as explained in Section 4.2. We define a measure of the observed
smoothness between pixels p and q as
∆p,q =
1+ (Ip − Iq)2

2− ‖θp − θq‖2
. (13)

In addition, we define a measure of smoothness for the global
minimization. Let If (p) and If (q) be the intensity values under a
labeling f . Similarly, let θf (p) and θf (q) be the orientations under the
same labeling. We define a measure of the smoothness between
neighboring pixels p, q under a labeling f as

∆̂p,q =
1+ (If (p) − If (q))2

2− ‖θf (p) − θf (q)‖2
. (14)

Using the smoothness measure defined for the observed data and
the smoothness measure defined for any given labeling we can
finally define the energy smoothness term as follows,

Esmooth(f ) =
∑
{p,q}∈N

V{p,q}(f (p), f (q)) (15)

Esmooth(f ) =
∑
{p,q}∈N

Kp,q ∗ ∆̂p,q (16)

where N is the set of neighboring pixels, Kp,q = [e
−
∆2p,q
2∗σ2 ], and σ

controls the smoothness uncertainty. Intuitively, if two neighbor-
ing pixels p and q have similar intensity and similar orientation in
the observed data, then∆p,q will be small and thus there is a high
probability of ∆̂p,q being small. To summarize, the function E(f )pe-
nalizes heavily for severed edges between neighboring pixels with
similar intensity and orientation, and vice versa.
An advantage of the proposed orientation-based segmentation

is that by incorporating orientation information in the optimiza-
tion process it ensures that linear segments are not severed, even
in the case where the color difference between neighboring pixels
is relatively big. By using the classified curve feature information
to guide the segmentation process we combine the fast computa-
tional times of graph-cuts and the high accuracy of the informa-
tion derived using the perceptual grouping to produce results with
better defined boundaries compared to traditional segmentation
techniques as demonstrated in Fig. 4.

5.3. Segmentation results

As explained in Section 5.1 our method generates two types of
information:

• a labeling which segments foreground and background pixels
and
• a labelingwhich assigns an orientation to each pixel. For clarity,
we show only the orientation information associated with the
foreground pixels.

The examples demonstrate the effectiveness of this approach
not only on images of road networks but also on general purpose.
An 8-neighborhood system is used for computing the smoothness
term, and is fixed for all examples shown. The number of orien-
tation labels Nθ may vary and is specified for each example. User
interaction is limited to specifying a set of seed points at the very
beginning of the segmentation process and the results shown are
the outputs after a single segmentation execution.
A simplistic case is shown in Fig. 5 that demonstrates the types

of output of our segmentation. The input is a synthetic image
shown in Fig. 5(a). The sparse orientation information computed
as explained in Section 4 is shown in Fig. 5(b). The output is a fore-
ground–background labeling shown in Fig. 5(c) and an orientation
labeling shown in Fig. 5(d). The dense orientation information in
Fig. 5(d) can be visually verified: the orientation of the horizontal
segment is aligned with the X axis i.e. 0◦ and the orientation of the
vertical segment is aligned with the Y axis i.e. 90◦. At the junction
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Fig. 4. Comparison between traditional intensity- and orientation-based segmentation. (a) Original image. (b) Intensity-based segmentation. (c) Orientation-based
segmentation. (d) Color-coded segmentation difference (red: common points, green: only in intensity segmentation, blue: only in orientation segmentation). Image
from Laptev et al. (2000). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Original. (b) Sparse orientation. (c) Color labels. (d) Dense orientation labels.

Fig. 5. Simple synthetic example which demonstrates the dense orientation output of the segmentation (Nθ = 8).
(a) Input image. (b) Extracted curve points. (c) Segmentation.

Fig. 6. Segmentation example for urban area. (λ = 0.1, Nθ = 8). The foreground and background pixels indicated by the user are shown in red and blue, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
point the orientation is aligned to the diagonal between the X and
Y axes i.e. 45◦.
Fig. 6 shows an example of an urban area. The foreground

and background pixels are indicated by the user on the original
image. A gaussian mixture model (GMM) is then used to compute
the color distribution of these foreground/background areas. In
contrast to Rother et al. (2004) we do not fix the order of themodel
to a particular number, but instead use a Minimum Description
Length (MDL) estimator (Rissanen, 1983) to compute the order.
Subsequently, the color distributions are incorporated during the
computation of the energy functions in the graph-cut optimization.
A more complicated example is shown in Fig. 7 of a rural area.

This example shows a comparison between intensity-based seg-
mentation, our method and mean-shift segmentation and demon-
strates a dramatic improvement of our segmentation method. The
image is a complex road network shown in Fig. 7(q) which consists
of many topologically-free linear features occupying the entire
image space. The image is then segmented using different smooth-
ness weights λ for the graph-cut methods and different color tol-
erances τ for the mean-shift. As it can be seen, our segmentation
outperforms the other techniques and preserves the boundaries
even for the high values of λ. The mean-shift segmentation also
successfully detects most of the parts of the salient dark col-
ored roads however it fails to detect the lesser salient roads as
in Fig. 7(m)–(n). For the comparison the same seed points and
smoothness λwere used.
6. Road network extraction and modeling

6.1. Road centerline extraction and linearization

The extraction of the road centerlines is performed using a set
of gaussian-based filters. A bi-modal filter is employed to detect
parallel lines and is defined as a mixture of gaussian kernels given
by,
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1√
2πσxσy
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2
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where the (. . .)r subscript stands for a rotation operation such that(
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)
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)
sin(φ)+ y cos(φ) (19)

where φ is the orientation of the filter and 0 ≤ φ ≤ π and w
is the distance between the peaks. The bi-modal filter is shown in
Fig. 8(a).
Bi-modal road-side filters of different orientations φ andwidths

w are applied to the classified curve features computed previously
as explained in Section 4. In order to overcome problems arising
from the coincidental presence of two curve pixels along the filters’
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(a) Intensity-based λ = 1. (b) Intensity-based λ = .5. (c) Intensity-based λ = .25. (d) Intensity-based λ = .1. (e) Orientation-based
λ = 1.

(f) Orientation-based
λ = .5.

(g) Orientation-based
λ = .25.

(h) Orientation-based
λ = .1.

(i) Difference (a)–(e). (j) Difference (b)–(f).

(k) Difference (c)–(g). (l) Difference (h)–(i). (m) Mean-shift (τ = 10). (n) Mean-shift (τ = 7). (o) Mean-shift (τ = 3).

(p) Mean-shift (τ = 1). (q) Original image. (r) Color labeling. (s) Orientation labeling.

Fig. 7. Segmentation: Intensity-based (a)–(d), orientation-based (e)–(h), difference between intensity- and orientation-based (i)–(l) and mean-shift (m)–(p). (for (e)–(h)
Nθ = 8). (q) shows the original image with the foreground seed pixels in red and the background in blue (shownmagnified by a factor of 3). In (r) and (s) we show the color
and orientation labeling produced with our approach for λ = .075,Nθ = 32. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8. (a) The bi-modal filter Gb is applied to the classified curve features. (b) Red arrows: filter orientation (at peaks). Black arrows: actual pixel orientation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Single mode filter. (b) An example of the use of the single mode (red)
and bi-modal filter (blue).

Fig. 9. The single mode filter is applied on the binary segmented image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 10. (a) The response magnitude map computed by the filters is used for the voting of Hough transform. (b) The majority of the centerlines are successfully extracted
automatically.
peaks, orientation information is used to weigh the response. This
ensures that the maximum response only occurs when both pixels
have the sameorientation and are aligned to the filter’s orientation.
Fig. 8(b) demonstrates the application of a bi-modal filter to a point
O. The orientations θL and θR of the left and right road-side points
pL and pR respectively are used to scale the response. Thus, Eq. (17)
becomes,

Gb =
1√
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In addition to the bi-modal filters, single mode gaussian road-
area filters are applied to the segmented binary image containing
the road candidates. This ensures that the area between any paral-
lel lines is indeed a part of the road and therefore should appear in
the result of the segmentation. An example that demonstrates the
commonly occurring problem handled by the single mode filter is
shown in Fig. 9(b) where the edge of the building and the road-
side will cause a high response to the bi-modal filter at location p.
However, the singlemode filterwill result in zero response because
the binary segmented image will not include the area between the
edges.
Road-area and road-side filters of different widths and orienta-

tions are combined as Gt = Gb ∗ Gs and are used for the extraction
of centerline information. A point along the centerline of a road of
orientation θR and width wR, will have a maximum response to a
filterwith the same or similar orientation andwidth. Thus, for each
pixelwe record the filter parameters (orientation,width) forwhich
it returns a maximum response.
Finally, the centerline response magnitudes are used as votes
in an iterative Hough transform. The iterative implementation of
the Hough transform has the significant advantage that no input
parameters are required for the Hough transform, such as number
of peaks, minimum vote thresholds, etc. therefore making the
linearization process entirely automatic. The result is a set of lines
representing the segments of the road network as shown in the
example of Fig. 10. The majority of the centerlines are correctly
extracted automatically (>80%). However, some false positives
still exist due to the global nature of Hough transform.

6.2. Road tracking

Using the automatically extracted width and orientation infor-
mation computed by the road-area and road-side filters, a tracking
algorithmconverts the linear segments into their equivalent polyg-
onal representations i.e. road segments. Two road-side points are
introduced for each point on a centerline. The spatial location of
the road-side points is determined by the road width and the road
orientation given by,

Pr = Pc +

 w sin(θ)
2

−w cos(θ)
2

 Pl = Pc +

−w sin(θ)2
w cos(θ)
2

 (21)

where Pc =
[
x
y

]
the 2D coordinates of the centerline point,w is the

width of the road and θ is the orientation of the road. Fig. 11 shows
an example of the road tracking. The road-sides are created using
Eqs. (21) and are shown as green lines.
In some cases where the road network is particularly complex,

the automatically extracted linear segments may contain false
positives and false negatives. This is due to the global nature of
the Hough transform and the difficulty to correctly handle areas of
high curvature such as curvy roads, and areas with no particular
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(a) The road centerlines are shown as yellow lines. The
points of the centerline vector are shown in blue.

(b) The road segments. The created road-side lines are
shown in green and their points are shown in blue.

Fig. 11. Road tracking. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Original. (b) Orientation-based segmentation.

(c) Centerline extraction. (d) Extracted road network.

Fig. 12. High resolution satellite image of an urban site with no additional information. In (a), (b) the marked areas show low contrast due to occlusions and shadows. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
orientation such as parking lots. For such cases, we employ an
interactive approach for further refinement which can have the
form of several actions outlined below:

(1) Adding a seed point. Once a seed point is added the road-
area and road-side filters are applied to derive the width and
orientation information. A local neighborhood search is then
performed which finds a candidate pixel that minimizes the
function,

f (x, y) = argmin(wd ∗ D(x,y) + wθ ∗ O(x,y)
+ww ∗ (W(x,y))) (22)

where D(x,y) is the euclidian distance between the candidate
and the seed point, O(x,y) is the orientation difference,W(x,y) is
the width difference and wd, wθ , ws are weights correspond-
ing to each term, respectively. This process is recursively re-
peated and each candidate point which minimizes f (x, y) is
added to the current line until no more neighboring points are
found. Theweights used for the exampleswere experimentally
derived as follows:wθ = 0.4, wd = 0.3, ws = wm = 0.3.

(2) Adding or editing a centerline. Once a centerline is added the
filters are applied at a fixed orientation aligned to the specified
centerline’s slope.

(3) Merging of two centerlines. Given two centerlines a Hermite
interpolation is performedwhich generates a cubic polynomial
between themost appropriate endpoints of the centerlines.We
initialize the Hermite formulation using the spatial location
of the endpoints and the precomputed orientations (by tensor
voting). This results in a smooth cubic curve P(u) containing a
fixed set of points parameterized by 0 ≤ u ≤ 1 and is given by,

P(u) = UTMB (23)

UT = [u3u2u11] (24)
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(a) Original. (b) Orientation-based segmentation.

(c) Centerline extraction. (d) Extracted road network.

Fig. 13. High resolution satellite image of an urban site with no additional information. In (a), (b) the marked areas show low contrast due to occlusions and shadows. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
M =

 2 −2 1 1
−3 3 −2 −1
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 (25)

B =

 PiPi+1Oi
Oi+1

 (26)

where Pi, Pi+1 are the two endpoints of the centerlines,Oi,Oi+1
are their orientations computed by the tensor voting and
0 ≤ u ≤ 1 is a parameterization which controls the
interpolated points’ locations. The result of the merging is a
single centerline consisting of the initial two centerlines and
the smooth interpolated curve connecting them.

(4) Deleting a centerline. A deleted centerline is removed from
the set of linear segments however, the underlying width and
orientation information is not altered.

(5) Smoothing. The centerline vector is converted to a set of dense
points. A ‘‘snake’’ is then used to refine the spatial position of
those points using the centerline magnitude map (Fig. 10(a))
as an external force. The energy function being minimized is a
weighted combination of internal and external forces defining
the contour and is given by,

Etotal =
∫ 1

0
[a(s) ∗ Eelasticity(v(s))ds+ b(s) ∗ Estiffness(v(s))

+ c(s) ∗ Eimage(v(s))]ds (27)

where a, b, c are weights, v(s) = (x(s), y(s)) is the parametric
form of the snake and x(s), y(s) are x, y coordinates along the
snake with 0 ≤ s ≤ 1. The elasticity term controls whether
the snake can be second-order discontinuous at point v(s)
and develop a corner. The stiffness term controls the spacing
between the points on the snake. The last term, attracts the
snake to image features such as edges. In our implementation
the elasticity weight a is set to themagnitude in the curvemap
of each point. Thus, if a point was classified as a curve with a
high saliency, it becomes very difficult for the snake to develop
a corner/junction at that point. The stiffness weight remains
the same for all points of the snake and is b = 0.5. The weight
for the last term is set as c = 0.7.

(7) Approximation/Point reduction. A centerline consisting of dense
set of points is approximated using Iterative End-Point Fit
thus reducing the number of points. A user-defined parameter
controls the maximum allowed approximation error.

Using the precomputed width and orientation information the
centerlines are converted into road segments which consist of a
centerline vector, a left road-side and a right road-side separated
by the width of the road. Finally, a set of polygonal boolean oper-
ations is applied to the road segments. This results in a polygonal
representation of the entire road network which allows for the ef-
ficient and correct handling of overlaps due to junctions, round-
abouts, etc.

7. Experimental results

Experimental results are presented which confirm the validity
of the proposed system. In our experiments, the smoothness term
is set to λ = 0.25 and the number of orientation labels to Nθ = 8
unless otherwise specified.
Fig. 12(a) shows a high resolution satellite image of an urban

site at a resolution of 1.32 K × 1.12 K. The orientation-based
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(a) Original. (b) Additional depth ground data. (c) Orientation-based segmentation.

(d) Extracted road network.

Fig. 14. Airborne LiDAR scanner data. (a) shows the initial points selected by the user for the segmentation. Blue points are for background and red points are for foreground
objects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
segmentation result is shown Fig. 12(b) where the foreground
objects appear in white and the background objects appear in
black. The red rectangles marked in Fig. 12(a) and (b) show areas
of the network with low intensity variations due to shadows and
occlusions, which were not included in the segmentation result.
Fig. 12(c) shows the centerlines extracted after applying the bi-
modal and single mode filters. The automatically generated result
is the road network vector data shown in Fig. 12(d). When in
automatic mode, we assume the topological characteristic of roads
that they are interconnected segments and belong to a larger
network, and thus keep only the longest detected road network as
the final result. This becomes obvious by the missing segment of
the vertical highway on the bottom left of the image. Although it
appears in the segmentation result as a road candidate, it was not
included in the final network since no connection was found.
Fig. 13(a) shows another example of a satellite image from an

urban site. Although the segmentation in Fig. 13(b) successfully
classified the road and non-road pixels, the tracking algorithm
failed to connect someparts due to big variations to the roadwidth.
The red rectangles marked in Fig. 13(a) and (d) indicate such areas.
An intensity-return (IR) image is shown in Fig. 14(a) as cap-

tured by an airborne LiDAR scanner at a resolution of 1 K × 1 K.
In this case, additional depth ground data was used as shown
in Fig. 14(b). The result of the orientation-based segmentation is
shown in Fig. 14(c). Fig. 14(d) shows the resulting vector data for
the extracted road network. User interaction was limited to a se-
lection of a few points for the segmentation at the beginning of
the execution shown in Fig. 14(a) in blue (background) and red
(foreground). Using additional depth data improves the overall
performance as in this case since it helps eliminate false positives
areas such as parking lots and buildings. In conclusion, the entire
road network was successfully recovered.
Fig. 15 shows an interactive result. Using a few user marked

road and non-road pixels the process starts by segmenting the
original image as in Fig. 15(a). The centerline information is then
automatically extracted as shown in Fig. 15(b), and is used to auto-
matically form linear centerline segments as in Fig. 15(c). The user
can add, adjust, connect or remove centerline segments, resulting
in a refined set of centerline components as in Fig. 15(d). Each time
a change occurs the centerline information in Fig. 15(b), (i.e.magni-
tude,width and orientation) is recomputed automatically to reflect
the current set of centerline components. Using the width and ori-
entation information the road segments can then be tracked auto-
matically as shown in Fig. 15(e). Finally, Fig. 15(f) shows the result
of combining the road segments together and converting them to
their equivalent polygonal representations. Note the correct han-
dling of the junctions.
Fig. 16 shows the final extracted roadnetwork using an airborne

LiDAR image of an urban area in Baltimore. The complete road net-
work extracted using this approach including the 3D polygonal
representations of the roads are shown in Fig. 17. The automati-
cally extracted and interactively refined centerlines are shown as
vectors (yellow lines) overlaid on the original image in Fig. 16(a).
The road segments which are tracked using the width and orienta-
tion information computed by the filters are shown in Fig. 16(b).
Fig. 16(c) shows the result of the boolean operations on the
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(a) Orientation-based segmentation. (b) Automatic extraction of centerline information (Only the
magnitude is shown).

(c) Connected centerline components (automatic). (d) Refined connected centerline components (interactive).

(e) Tracked road segments. (f) Vector data.

Fig. 15. Interactive mode. (a) The result of the segmentation. (b) The centerline information extracted automatically by the parallel-line detector. (c) The centerline
components recovered automatically. (d) The user refined centerline components. (e) The tracked road segments automatically computed using (d). (f) The final road map
vector data.
polygonal representation of the road segments. As it can be seen
overlapping areas e.g. at junctions are handled efficiently and cor-
rectly and produce nicely looking intersections.

8. Evaluation

The evaluation of the extracted road networks is performed
using the evaluation framework introduced in Wiedemann and
Hinz (1999), in terms of the completeness, correctness and quality.
• Completeness. The completeness is defined as the ratio of the
true positives from the sum of the true positives and false
negatives given by,

ECompleteness =
TruePositives

TruePositives+ FalseNegatives
. (28)

The optimal value of the ECompleteness is 1, in which case 100% of
the roads are recovered.
• Correctness. The correctness is defined as the ratio of the true
positives from the sum of the true and false positives given by,

ECorrectness =
TruePositives

TruePositives+ FalsePositives
. (29)
The optimal value of the ECorrectness is 1, in which case 100% of
the extracted roads are actual roads.
• Quality. The quality is a measure of the ‘‘goodness’’ of the final
result and is given by,

EQuality =
TruePositives

TruePositives+ FalsePositives+ FalseNegatives
. (30)

The optimal value for the EQuality is 1, in which case 100% of the
extracted roads are correct and complete.

The above parameters i.e. true positives, false positives and false
negatives are determined based on existing geospatial databases.
In cases where no additional geospatial information is available,
the operator indicates the required parameters.
As it is evident from the results and the metrics of Table 2 the

proposed approach performs well for rural as well as urban areas.
The success of our approach depends primarily on the performance
of the low-level grouping and mid-level segmentation processes.
The grouping and segmentation are the two essential components
that can drastically affect the outcome. The use of tensor voting
framework significantly improves the grouping results since it
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Fig. 16. The result of a 2 K × 2 K urban area. (a) Centerline vectors overlaid on original image. (b) Tracked road segments using the automatically extracted width and
orientation. Note the overlap at junctions. (c) Road network using polygonal representation. The overlaps are correctly handled by the boolean operations to form properly
looking intersections/junctions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Evaluation of extracted road networks. The images for Oregon, Kentucky and Las
Vegas were taken from Google (2009).

Examples Evaluation measures
Completeness (%) Correctness (%) Quality (%)

Oregon (12(d)) 82 80 68.6
Kentucky (13(d)) 86 75.5 67.3
Baltimore (14(d)) 83 66 58.8
Las Vegas (15(c)) 71.4 80 60.6

eliminates any ‘‘guessing’’ (by using thresholds) when making
decisions about neighboring features. However, problemsmay still
arise in cases where occlusion is severe, for example in densely
built areas with high buildings like Manhattan, NY or in areas
where trees occlude large parts of the roads. In this cases, the use
of additional information such as LiDAR data is almost necessary
to be able to generate useful results. Examples of these cases were
shown in Figs. 12 and 13.
Similarly, the use of a specialized segmentation process con-

siderably improves the segmented road pixels. However, the
segmentationprocess is based on the assumption that theGaussian
distributions of the foreground and background pixels (i.e. road
and non-road pixels) are easily separable. Although this is true in
most caseswith color imagery, there are instanceswhere non-road
pixels exhibit the same reflectance properties (i.e. have the same
color) as the road pixels. The example shown in Fig. 14 demon-
strates this problem. In this example, an intensity-return (IR) im-
age and a depth image of the same area were used for the road
extraction. The segmentation of the IR image produces many false
positives due to the fact that many rooftops are paved using the
same material as the roads, hence their response will be similar to
that of the true road pixels. The use of the additional LiDAR eleva-
tion information however, resolves this problem.

9. Conclusion

We have presented a framework for the automatic and reliable
detection and extraction of complex transportation networks from
remote sensor data. Uniquely, our framework is an integrated solu-
tion that merges the strengths of perceptual grouping theory (Ga-
bor filters, tensor voting) and segmentation (global optimization
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(a) A 10 K× 4 K area covering Baltimore and surrounding areas. (b) The 3D polygonal representations. The elevation
information from the LiDAR was used to model the
roads correctly and handle special cases such as bridges.

Fig. 17. The complete road network for downtown Baltimore and surrounding areas.
by graph-cuts), under a unified framework to address the chal-
lenging problem of automated feature detection, classification and
extraction.
Firstly, we leveraged the local precision and the multi-scale,

multi-orientation capability of Gabor filters, combined with the
global context of the tensor voting for the extraction and accurate
classification of geospatial features. In addition, a tensorial rep-
resentation was employed for the encoding which removed any
data dependencies by eliminating the need for hard thresholds.
Moreover, the integration of the Gabor filtering and tensor voting
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removes the limitation of tensor voting to only work with binary
images, and extends its application to grayscale images.
Secondly, we have presented a novel orientation-based seg-

mentation using graph-cuts for segmenting road features. A major
advantage of this segmentation is that it incorporates the orien-
tation information of the classified curve features to produce seg-
mentations with better defined boundaries.
Finally, a set of gaussian-based filters were developed for the

automatic detection of road centerlines and the extraction ofwidth
and orientation information. The linearized centerlines were fi-
nally tracked into road segments and then converted to their
polygonal representations.
Extensive tests have shown that the proposed system performs

well for all datatypes and scenes, and has consistently achieved a
minimum success rate of an average of 69.3%. However, our ex-
periments have shown that the use of LiDAR data significantly
improves the road feature segmentation and labeling due to the
known elevation of each point and therefore results in better
segmented roads. Satellite imagery on the other hand, seems to
perform poorly in cases where the color distributions of the back-
ground and foreground objects (roads) were very similar thus hard
to discriminate. A particularly difficult example which demon-
strates this is the test case shown in Fig. 7, where the road network
and the background (dirt) in the grayscale image have similar color
distributions. A possible method to overcome this problem would
be to incorporate prior knowledge about the road reflectance prop-
erties by training the system and to additionally compute the color
distributions based on the spatial location of the points (i.e. locally
and not globally as it is currently the case), which is a direction we
are currently exploring.

Appendix. Graph-cut

In Boykov et al. (1999, 2001) the authors interpret image seg-
mentation as a graph partition problem. Given an input image I , an
undirected graph G = 〈V , E〉 is created where each vertex vi ∈ V
corresponds to a pixel pi ∈ I and each undirected edge ei,j ∈ E rep-
resents a link between neighboring pixels pi, pj ∈ I . In addition,
two distinguished vertices called terminals Vs, Vt , are added to the
graph G. An additional edge is also created connecting every pixel
pi ∈ I and the two terminal vertices, ei,Vs and ei,Vt . For weighted
graphs, every edge e ∈ E has an associated weightwe.
A cut C ⊂ E is a partition of the vertices V of the graph G into

two disjoint sets S, T where Vs ∈ S and Vt ∈ T . The cost of each cut
C is the sum of the weighted edges e ∈ C and is given by

|C | =
∑
∀e∈C

we. (A.1)

The minimum cut problem can then be defined as finding the cut
with the minimum cost. An algorithm for solving this problem has
been proven to require polynomial time (Boykov et al., 1999).

Energy minimization function

Finding the minimum cut of a graph is equivalent to finding an
optimal labeling f : I −→ Lwhich assigns a label l ∈ L to each pixel
p ∈ I , and f is piecewise smooth and consistent with the original
data. The energy function is then given by,

E(f ) = Edata(f )+ λ ∗ Esmooth(f ) (A.2)

where λ is the weight of the smoothness term.

Energy data term

The data term in Eq. (A.2) measures the cost of re-labeling the
original data with a new labeling f . It is defined us the sum of the
per-pixel measure (Dp) of how appropriate each label fp −→ l ∈ L
is, for each pixel p ∈ I in the original data and is given by,

Edata(f ) =
∑
p∈I

Dp(fp). (A.3)

Energy smoothness term

The smoothness term in Eq. (A.2) measures the cost of re-
labeling neighboring pixels with a new labeling f . It is defined as
the sum of the differences between two neighboring pixels p, q ∈ I
under a labeling fp −→ lp ∈ L and fq −→ lq ∈ L respectively and
is given by,

Esmooth(f ) =
∑
{p,q}∈N

V{p,q}(fp, fq) (A.4)

where N is the set of neighboring pixels and V{p,q} measures the
difference between the neighboring pixels, also known as the
interaction potential function.
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