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Many different algorithms have been proposed for the extraction of features with a range of applications.
In this work, we present Tensor-Cuts: a novel framework for feature extraction and classification from
images which results in the simultaneous extraction and classification of multiple feature types (surfaces,
curves and joints). The proposed framework combines the strengths of tensor encoding, feature extrac-
tion using Gabor Jets, global optimization using Graph-Cuts, and is unsupervised and requires no thresh-
olds. We present the application of the proposed framework in the context of road extraction from
satellite images, since its characteristics makes it an ideal candidate for use in remote sensing
applications where the input data varies widely. We have extensively tested the proposed framework
and present the results of its application to road extraction from satellite images.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

For many years, there has been a plethora of research work in
the area of automatic extraction of road networks from satellite
images. Many different algorithms have been proposed so far each
with its strengths and weaknesses. Although there have been con-
siderable progress in this area there still exists a rather large gap
between the current state-of-the-art and the desired goal. To make
matters worse each proposed algorithm excels when used with a
particular type of data and fails with another. Quite often, the pri-
mary reason for this is due to the fact that existing segmentation
frameworks used in the processing pipeline are only able to deal
with particular types of imagery, or even worse require an abun-
dance of thresholds which have to be tuned for different types of
data/images. Hence, it is no surprise that the segmentation is often
identified as the weakest link in automatic road extraction pipelines
since it dictates the accuracy and quality of the final results.

Motivated by the limitation of our earlier work in Poullis and
You (2010) to only classify curve pixels, we present a novel frame-
work for the simultaneous segmentation and classification of mul-
tiple image features, called Tensor-Cuts. The proposed framework
contains no thresholds since all information is encoded as tensors,
and the efficient and global optimization technique Graph-Cuts is
used to refine this information. Our technical contributions are:

� A novel segmentation framework which relies on tensorial
representation, Gabor filters and global optimization using
Graph-Cuts; named Tensor-Cuts.
� The proposed segmentation has no threshold since all informa-

tion is encoded as tensors and refined using Graph-Cuts.
� An incremental improvement on the road center-point extrac-

tion procedure for the automatic extraction of center-points.

In contrast to our previous work (Poullis and You, 2010), the
proposed segmentation encodes labels as tensors which can
simultaneously capture information about three geometric types:
surface, curve and junction. This eliminates the need for a pre-
classification step (to separate curve pixels) prior to the segmenta-
tion as was the case in Poullis and You (2010) since both, the initial
and final labeling have the form of tensors. Moreover, the energy
function penalizes for dissimilarities between all pixels/tensors
(rather than differences between orientations of only the pixels
classified as curves) resulting in better defined segmentation. Thus,
the user interaction previously required to mark foreground and
background areas in the image prior to the processing is no longer
required making the proposed framework automatic. Furthermore,
the newly introduced energy label term in the Graph-Cut optimi-
zation ensures that a minimum number of labels are used in the
new labeling which produces smoother results. Finally, the
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extraction of roads is achieved using an improved and more effi-
cient variant of the procedure described in Poullis and You
(2010) which exploits prior-knowledge about the characteristics
and the function of roads to efficiently apply a set of Gaussian ker-
nels to extract road entry points in the image. Once the entry points
have been identified a variety of road tracking algorithms can then
be employed for extracting the complete network; in our case
tracking using template matching.

The paper is organized as follows: Section 2 presents a brief
overview of the state-of-the-art in the area and Section 3 a system
overview of the proposed method. Section 4 explains the intrinsic
details of how the encoding of the information into their tensorial
representation is performed. This includes the application of Gabor
filters (Section 4.1.1), and the conversion of the response images to
tensors (Section 4.1), the creation of the tensor labels (Section 4.2).
Section 5 presents the application of the global optimization
Graph-Cuts using tensors and an explanation of the energy func-
tions used. Section 6 presents the road extraction pipeline which
incorporates the segmentation framework. Finally, Section 7 shows
the results of the proposed technique.
2. Related work

There has been considerable work in the area of automatic road
extraction. Below we present an overview of the state-of-the-art in
the area.

Doucette et al. (2001) present a self-organizing road map algo-
rithm. Their approach proceeds by performing spatial cluster anal-
ysis as a mid-level processing technique. This enables them to
improve tolerance to road clutter in high-resolution images, and
to minimize the effect on road extraction of common classification
errors. Their approach is designed in consideration of the emerg-
ing trend towards high-resolution multispectral sensors. Indeed,
their preliminary results demonstrate robust road extraction abil-
ity due to the non-local approach, when presented with noisy
input.

Hinz and Baumgartner (2003), propose a system which inte-
grates detailed knowledge about roads and their context using
explicitly formulated scale-dependent models. The knowledge
about how and when certain parts of the road and context model
are optimally exploited is expressed by an extraction strategy.

Bacher and Mayer (2005), proposed an automatic road extrac-
tion technique from satellite images of rural and suburban areas.
The first step is the extraction of Steger lines in all spectral chan-
nels which are then used as cues for roads to generate training
areas for a subsequent automatic supervised classification. The
resulting classification is finally used as an additional source for
the extraction of road candidates.

Mena and Malpica (2005) propose a system which includes four
different modules: data pre-processing; binary segmentation
based on three levels of texture statistical evaluation; automatic
vectorization by means of skeletal extraction; and finally a module
for system evaluation. The proposed system is quite efficient in
producing the results.

On a different note, Lacoste et al. (2005) propose an approach
which models the target line network by an object process, where
the objects correspond to interacting line segments. They design
the prior model so that they will exploit as fully as possible the
topological properties of the network under consideration, while
the radiometric properties of the network are modeled using a data
term based on statistical tests.

In a different approach Grote and Heipke (2008), proposed a
region-based approach on high resolution aerial images working
from small local regions to roads as groups of road parts. The first
step is to segment the image using the normalized cuts algorithm
and group small segments to form larger segments; from these
grouped segments road parts are then extracted.

In Das et al. (2011), the authors propose a multi-stage auto-
mated system for extracting road networks from high-resolution
satellite images which produces impressive results. During the first
stage, information about edges is extracted using a proposed pro-
cess called ‘‘dominant singular measure’’ and information about
regions is extracted using a probabilistic SVM classifier. This infor-
mation is then integrated together using a constraint satisfaction
neural network. A set of post-processing steps is then applied at
a second stage, in order to improve the accuracy the extracted
roads by removing false positives as well as to recover missing
small areas due to false negatives. The system does not vectorize
the road network but rather provides a binary classification of each
pixel into road or non-road.

By employing neural networks with millions of trainable
weights, Mnih and Hinton (2010) proposed the detection of roads
which looks at a much larger context than was used in previous
attempts at learning the task. The network is trained on massive
amounts of data using a consumer GPU. The results confirm that
their method works reliably on challenging urban datasets that
are an order of magnitude larger than what was used to evaluate
previous approaches.

Using stereoscopic satellite aerial images, Poz et al. (2012) pro-
poses a semiautomatic method for 3-D road extraction in rural
areas. They employ a strategy based on the dynamic programming
algorithm which provides a solution to the road extraction prob-
lem in the object space. In order to find road centerlines, the
extraction process begins by first measuring a few seed points in
one image of the stereoscopic pair and then transforming these
into the object-space reference system. Experimental results show
that the proposed method is efficient and provides relatively accu-
rate road centerlines.

A higher-order CRF model is presented in Wegner et al. (2013)
for road network extraction from dense urban scenes. A CRF for-
mulation is proposed for road labeling, where the prior is repre-
sented by higher-order cliques which connect sets of superpixels
along straight line segments. Although the parameters are manu-
ally tuned for the clique sampling the results seem very
promising.

Although a plethora of techniques have been proposed for the
automatic or semi-automatic road extraction, the gap between
the state-of-the-art and the desired goal, of automatic road
extraction from satellite images, still remains wide. In this work
we introduce a framework which is fully automatic and does
not require interaction with the user to mark road and/or non-
road pixels nor to exactly separate various objects from the
image.
3. System overview

Fig. 1 shows an overview of the proposed system consisting of
two phases:

1. Tensor encoding: The original image is filtered with a set of
Gabor Jets and the responses are encoded into tensors. Simi-
larly, a Gaussian hemisphere’s geometric properties are
encoded as tensors as described in Section 4.

2. Global optimization: The encoded tensors are optimized using
the efficient, global optimization technique, Graph-Cuts, which
is explained in Section 5.

3. Road extraction: Road center-point candidates are extracted
using a set of single and bi-modal Gaussian-based kernels.
Based on the road center-points the roads are then extracted
via tracking.



Fig. 1. Tensor-Cuts overview.
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The input parameters to the system are (1) the satellite image
and (2) the Gaussian hemisphere radius. The output of the system
is a set of three maps each indicating, for each pixel in the image,
(1) its feature type, (2) its orientation and (3) its class.
4. Tensor encoding

The tensor encoding3 consists of the following two phases:

1. Firstly, the input image is filtered with a bank of Gabor Jets and
at the same time, it is converted into a three-dimensional struc-
ture and the normal orientations are extracted. The extracted
information is then encoded into tensors which will form the
initial set of labels of the sample data. This process is presented
in detail in Section 4.1.

2. Secondly, the input sphere radius is used to create a Gaussian
hemisphere. The normals of the Gaussian hemisphere are com-
puted and are encoded into tensors. The resulting tensors will
form the new labeling of the sample data. This process is pre-
sented in detail in Section 4.2.

4.1. Derivation of the initial labeling f

The first phase of the tensor encoding is the derivation of the
initial labeling f and is performed in three steps:

1. The application of a bank of Gabor Jets on the original image
described in Section 4.1.1.

2. The conversion of the image to a three-dimensional structure
described in Section 4.1.2.

3. The encoding of the computed information (Gabor response
images and normals) to tensors. The resulting tensors will form
the initial labeling f, described in Section 4.1.3.
3 An excellent overview of tensorial representation and the tensor voting frame-
work can be found in Medioni et al. (2000).
4.1.1. Application of Gabor Jets
Gabor filters have long been used as the most appropriate

mathematical model to represent the function of the simple cell
receptors present in the primary visual cortex (V1) because of their
ability to respond to bars of given frequency and orientation
(Hubel, 1982; Hubel and Wiesel, 1962; Hubel and Wiesel, 1974;
Jones and Palmer, 1987; Daugman et al., 1985). Motivated by this
unique characteristic we employ a bank of Gabor Jets consisting
of a set of finely-tuned 2D Gabor functions gðx; yÞ to extract linear
features from the input image of given frequency and orientations.

A 2D Gabor function gðx; yÞ is defined as the product of a com-
plex sinusoidal (known as the carrier) and a Gaussian function
(known as the envelope) and is defined as,

gðx; yÞ ¼ Aejð2pðu0xþv0yÞþ/Þeð�pðs
2
x ðx�x0Þ2#þs2

y ðy�y0Þ2#ÞÞ ð1Þ

where A is a scale of magnitude, ðu0;v0 is the spatial frequency
which can also be expressed as polar coordinates with magnitude
F0 and direction x0;/ is the phase of the sinusoidal, ðsx; syÞ are scale
factors for the axes, ðx0; y0 are the peak coordinates of the oscilla-
tion, and # is the rotation angle.4

Similarly to the work in Poullis and You (2010), the bank of
Gabor Jets consists of 40 Gabor functions (8 orientations � 5 fre-
quencies), each one designed to respond to a different frequency
and different orientation as shown in Fig. 2(a). In all reported
experiments, the 8 orientations hi;0 6 i < 8 are uniformly distrib-
uted in the range ½0;pÞ. Similarly, the 5 frequencies /j;0 6 j < 5
are uniformly distributed in the range p

32 ;
p
8

� �
.

The application of the Gabor Jets on the input image in Fig. 2(b)
results in 40 response images Rhi ;/j

as shown in Table 1.
4.1.2. Conversion of original image to three-dimensional structure
The input color image IRGB can be interpreted as a three

dimensional structure in color space, where each pixel p 2 IRGB is
4 # denotes a rotation operation, e.g. ðx� x0Þ# ¼ ðx� x0Þ cos#þ ðy� y0Þ sin#



Fig. 2. (a) A bank of Gabor Jets consisting of 40 Gabor functions (8 orientations, 5
frequencies), each one designed to respond to a different frequency and orientation.
(b) A simple image used for proof-of-concept, exhibiting linear features.
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represented as a three-dimensional point xp 2 R3 with Euclidean
coordinates xp ¼ hrp; gp; bpi.

Instead of using the RGB color space, extensive empirical exper-
iments have shown that by first converting the original input color
image IRGB to a perceptually linear color space such as CIELAB ILab

significantly improves the subsequent processing. Perceptually lin-
ear means that a change of the same amount in a color value will
produce a change of about the same visual importance. This is
because the RGB color space is suitable for expressing the colors
but it is not very good when it comes to color image segmentation
and analysis due to the large correlation between the three pri-
mary colors red, green and blue. The CIELAB color, on the other
hand, controls color and intensity information more independently
and is especially efficient when measuring small color differences.
The image ILab is then converted to grayscale Ig and finally, con-
verted to image IXYG where each pixel p 2 IXYG is represented as a
three-dimensional point xp 2 R3 with Euclidean coordinates
xp ¼ hXp;Yp;Gpi, where Xp is the horizontal axis position of the
pixel p and has a value in the range of 0 6 Xp < W (where W is
the width of the image IXYG), Yp is the vertical axis position of the
pixel p and has a value in the range of 0 6 Yp < H (where H is
the height of the image IXYG) and Gp is the grayscale value of the
pixel p and has a value in the range of 0 6 Gp < 255. Fig. 3 shows
an example of the color space conversion. Fig. 3(a) shows the con-
verted IXYG being overlaid on its three-dimensional representation.
Similarly, Fig. 3(b) shows the input color image overlaid on its
three-dimensional representation. Another example is shown in
Fig. 4 where the three-dimensional representation of the satellite
image in Fig. 12(a) is shown.

Lastly, a three-dimensional mesh representing the image IXYG is
created using a nearest neighbor triangulation algorithm and the
normal at each point is computed using local neighborhood infor-
mation at each point in the mesh. For every point pi of the mesh M
corresponding to the image IXYG we define the normal Npi

of that
point as,
Npi
¼ 1

8
�
X8

j¼1

Npj
ð2Þ
5 The intensity responses Ip
hi ;/j

for each pixel p are normalized and are in the range
of [0,1].

6 The grayscale values Ip
ðXYGÞ for each pixel p are normalized and are in the range of

[0,1].
where Npj
is the normal computed with the neighboring point pj

within the 8-neighborhood system. Each of the 8 normals Npj
, is

computed as the cross product of the vectors connecting the point
pi and two consecutive(in clockwise order) neighboring points
pj;pjþ1, as indicated by the vectors ~a;~b;~c;~d;~e;~f ;~g;~h in Fig. 5.
4.1.3. Encoding of information to tensors
At this point, the information captured by the Gabor filters

could be used for classifying each point in the image as a curve
or non-curve. However, this would introduce the need for hard
thresholds. Moreover, it would not take into account normal infor-
mation computed from the three-dimensional representation of
the image. To avoid the use of hard thresholds we integrate the
tangent and normal information together using a tensorial
representation. The reason for choosing this particular tensorial
representation is the unique characteristic that a tensor can simul-
taneously capture the geometric information for multiple feature
types (junction, curve, surface) and a saliency, or likelihood, asso-
ciated with each feature type passing through the pixel being
encoded. Thus, no decision has to be made about the feature type
of each pixel, which eliminates the need for thresholds.

The information of the Gabor response images and the com-
puted normals capture the local tangent and normal information
at each point in the image. This information is encoded into sec-
ond-order symmetric tensors which provides a mechanism for
combining this information together. A second-order symmetric
tensor T is defined as,

T ¼ ~e1 ~e2 ~e3
� � k1 0 0

0 k2 0
0 0 k3

264
375 ~eT

1

~eT
2

~eT
3

264
375 ð3Þ

T ¼ k1~e1~eT
1 þ k2~e2~eT

2 þ k3~e3~eT
3 ð4Þ

where k1 P k2 P k3 P 0 are eigenvalues, and ~e1; ~e2; ~e3 are the
eigenvectors corresponding to k1; k2; k3 respectively. By applying
the spectrum theorem, the tensor T in Eq. (4) can be expressed as
a linear combination of three basis tensors(ball, plate and stick) as
in Eq. (5).

T ¼ ðk1 � k2Þ~e1~eT
1 þ ðk2 � k3Þð~e1~eT

1 þ~e2~eT
2Þ þ k3ð~e1~eT

1 þ~e2~eT
2 þ~e3~eT

3Þ
ð5Þ

In Eq. (5), ð~e1~eT
1Þ describes a stick (surface) with associated saliency

ðk1 � k2Þ and normal orientation ~e1; ð~e1~eT
1 þ~e2~eT

2Þ describes a plate
(curve) with associated saliency ðk2 � k3Þ and tangent orientation
~e3, and ð~e1~eT

1 þ~e2~eT
2 þ~e3~eT

3Þ describes a ball (junction) with associ-
ated saliency k3 and no orientation preference.

For each pixel pvalid with a non-zero response (i.e. >0.001) in a
response image Ihi ;/j

, a plate tensor Tp is created, having the mini-
mum eigenvector ~e3 aligned to the orientation hi and the maximum
eigenvector ~e1 aligned to the computed normal at the point, and
associated eigenvalues k1 ’ k2 ’ Ip

hi ;/j
andk3 ¼ 0, where Ip

hi ;/j
is the

response of pixel p in the response image Ihi ;/j.5 Similarly, for each
pixel pinvalid with a zero response (i.e. 6 0:001) in the response image
Ihi;/j, a stick tensor Tp is created, having the minimum eigenvector ~e3

aligned to the orientation hi and the maximum eigenvector ~e1

aligned to the computed normal at the point, and associated eigen-
values k1 ¼ Ip

ðXYGÞandk2 ’ k3 ¼ 0, where Ip
ðXYGÞ is the grayscale value of

pixel p in the image IXYG.6 This is repeated for each response images;
and for each pixel, 40 tensors are added together to form one result-
ing tensor as described in detail in Algorithm 1.

Using the tensor decomposition Eq. (5), all pixels for which
ðk2 � k3Þ > k3 are classified as part of curves with tangent orienta-
tion~e3. Similarly all pixels for which k3 > ðk2 � k3Þ are classified as
junction points with no orientation preference.

Fig. 6(a) shows the saliencies of each point for the image in
Fig. 2(b). Fig. 6(b) shows the corresponding orientations



Table 1
The 40 Gabor response images corresponding to the image in Fig. 2(b). Each response image
corresponds to a particular frequency and orientation. The horizontal axis represents the five
different frequencies used. The vertical axis represents the eight different orientations used.

C. Poullis / ISPRS Journal of Photogrammetry and Remote Sensing 95 (2014) 93–108 97



Fig. 3. Conversion of the input image to a three-dimensional structure.

Fig. 4. Conversion of the input image in Fig. 12(a) to a three-dimensional structure.

Fig. 5. Normal computation. The normal vector (blue) for each point Pi is computed
as the normalized sum of the 8 cross products of the vectors j~a�~bj; j~b�~cj; j~c �~dj,
etc., as given by Eq. (2). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Tensor decomposition. The saliency and orientation maps are the results of
tensor decomposition. The meaning of the orientation varies according to the
feature type passing through each point.
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corresponding to the saliency map in Fig. 6(a). The meaning of the
orientation varies according to the feature type passing through
each point. Intuitively, if a pixel is classified as a curve i.e.
ðk2 � k3Þ > ðk1 � k2Þ; ðk2 � k3Þ > k3 then the orientation represents
the tangent ~e3 of the curve passing through that point. Similarly,
if a pixel is classified as a surface then the orientation represents
the normal ~e1 of the surface passing through that point; if a pixel
is classified as a joint then the orientation is set to zero.

The result is the initial labeling f of the sample data which con-
sists f a set of tensors, each one corresponding to the sum of the
tensor-encoded responses of each pixel in the image.



Fig. 7. Computation of the normals based on the geometry of a Gaussian hemisphere.

Algorithm 1. Encode Gabor response images and Normals to tensors.

Tf ¼ ; . set of tensors () initial labeling f
for p ¼ 0! width� height . number of pixels

Tpsum
 0f g . Tpsum

: sum of plate tensors; initialize Tpsum
corresponding to pixel p

for i ¼ 0! O do . O = number of orientations
h i

8 p
for j ¼ 0! F do . F = number of frequencies

/ j
5 ð p32� p

8Þ
~e3  hcosðhÞ; sinðhÞ;0i . align~e3 with the Gabor function’s orientation
~e1  ~Np . align~e1 with the point’s normal
~e2  ~e1 �~e3 . compute~e2 from~e1; ~e3 (ortho-normal basis)
v  Ip

i;j
. get the response value for this pixel

if v–0 then
eval  v � h1;1;0i . scale the eigenvalues
Tp  eval � ðk1~e1~eT

1 þ k2~e2~eT
2 þ k3~e3~eT

3Þ . plate tensor for p (Eq. (3))
else

v  Ip
XYG

. get the grayscale value for this pixel
eval  v � h1;0;0i . scale the eigenvalues
Tp  eval � ðk1~e1~eT

1 þ k2~e2~eT
2 þ k3~e3~eT

3Þ .stick tensor for p (Eq. (3))
end if
Tpsum

 Tpsum
þ Tp . Matrix addition

end for
end for
Tf  Tf

S
Tpsum

. Add to set of tensors
end for
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A comparison with the method introduced in Poullis and You
(2010) shows that a two step classification process was required
because the tensor encoding was performed using only orientation
information while completely ignoring color information: first a
refinement and classification using the computationally expensive
Tensor Voting and secondly, a segmentation using Graph-Cuts
whose sole purpose was to incorporate back the ignored color
information, along with the orientation information. In the pro-
posed framework, these difficulties are overcome by incorporating
all available information while encoding to tensors right from the
beginning.

4.2. Derivation of the new labeling f 0

As mentioned earlier, the extraction and simultaneous classifi-
cation of image features is reformulated as a labeling problem,
e.g. given an initial large set of labels, re-label them using a small
set of new labels, subject to a cost function. In our case, the initial
labels are usually equal to the number of pixels in the image and
may contain near duplicates due to noise. In order to reduce the
number of the initial labels and avoid having near duplicates, we
perform the second phase of the tensor encoding and derive a
new labeling f 0 in two steps:

1. The creation of a depth map based on a Gaussian hemisphere
created with the input radius r as shown in Fig. 7(a). Based on
the geometry of the Gaussian hemisphere shown in Fig. 7(b),
the normal orientation at each point is computed similarly to
the process explained in Section 4.1.3.

2. This information is used to compute a set of tensors at each
point, as described below.

The new labeling is computed as a set of stick and plate tensors,
representing surface and curve features respectively, which result
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from encoding the points lying on the Gaussian hemisphere. For
each point p with local normal orientation ~np lying on the surface
of the Gaussian hemisphere, H plate tensors and H� C stick ten-
sors are created, representing possible surfaces and curves passing
through that point. H is a predefined number of orientations which
in our experiments is H ¼ O,7 0 6 H < p i.e. equals the number of
orientations used in the computation of the Gabor Jets. C is a prede-
fined number of gray levels which in our experiments is
C ¼ 64;0 6 C 6 255. C is the quantization factor used to scale the
eigenvalues of the stick tensors. The scaling is imperative since it
allows the differentiation of two surface tensors with same orienta-
tion but different ‘‘height’’. Consider the example in Fig. 3(a). Almost
all plateaus have the same orientation, hence a unit stick tensor can
correspond to any one of the surfaces. Scaling the eigenvalues of the
stick tensor allows us to differentiate between the several surfaces.

The total number of normals N resulting from the geometry of
the Gaussian hemisphere depends on the radius r. In all reported
results, the radius is set to r ¼ 11 which results in
jTj ¼ H� N þH� C � N ¼ H� N � ð1þ CÞ tensors. Thus, the new
labeling f 0 consists of a set of scaled stick and plate tensors which
are computed as explained in detail in Algorithm 2.
Algorithm 2. Encode Gaussian hemisphere normals to stick and plate tensors.

Tf 0 ¼ ; . set of tensors () new labeling f 0

for i ¼ 0! N do . N = normals on Gaussian hemi-sphere
~e1  ~Ni . align~e1 with the Gabor functions orientation
for j ¼ 0! H do . H = number of orientations
~e3  hcosðHjÞ; sinðHjÞ;0i
~e2  ~e1 �~e3 . compute~e2 from~e1;~e3 (ortho-normal basis)
eval  h1;1;0i . eigenvalues for unit plate tensor
Pph;/

 eval � ðk1~e1~eT
1 þ k2~e2~eT

2 þ k3~e3~eT
3Þ . plate tensor (Eq. (3))

Tf 0  Tf 0
S

Pph;/
. Add to set of tensors

for k ¼ 0! C do . C = number of gray levels

v  Ck
255

eval  v � h1;0;0i . scale the eigenvalues
Sph;/;Ck

 eval � ðk1~e1~eT
1 þ k2~e2~eT

2 þ k3~e3~eT
3Þ . stick tensor (Eq. (3))

Tf 0  Tf 0
S

Sph;/;Ck
. Add to set of tensors

end for
end for

end for
5. Optimization using Graph-Cuts

The extraction and simultaneous classification of image features
is reformulated as a labeling problem. The initial labeling f consist-
ing of the set of tensors encoded as described in Section 4.1 is to be
relabeled using the new labeling f 0 consisting of a set of tensors
encoded as described in Section 4.2. This problem can be efficiently
solved using Graph-Cuts as explained below in Section 5.1.

5.1. Graph-Cuts

Given the input image IXYG containing the pixels of the input
image, an undirected graph G ¼ hV ; Ei is created where each vertex
v i 2 V corresponds to a pixel Pi 2 IXYG and each undirected edge
ei;j 2 E represents a link between neighboring pixels Pi; Pj 2 IXYG.
In addition, two distinguished vertices called terminals Vs;Vt , are
added to the graph G. An additional edge is also created connecting
every pixel Pi 2 IXYG and the two terminal vertices, ei;Vs and ei;Vt . For
weighted graphs, every edge e 2 E has an associated weight we. A
7 O = number of orientations as first presented in Algorithm 1.
cut C � E is a partition of the vertices V of the graph G into two dis-
joint sets S; T where Vs 2 S and Vt 2 T . The cost of each cut C is the
sum of the weighted edges e 2 C and is given by

jCj ¼
X
8e2C

we ð6Þ

The minimum cut problem can then be defined as finding the
cut with the minimum cost.

The binary case explained above can easily be extended to a
case of multiple terminal vertices. We create a terminal vertex
for each label tensor Ti 2 f 0 corresponding to each tensor in the
new labeling tensor set. Thus the set of labels L has size
jLj ¼ jTj ¼ H� N � ð1þ CÞ and is defined to be L ¼ ft1; t2; . . . ; tjTjg.

Finding the minimum cut of a graph is equivalent to finding an
optimal labeling / : IPi

XYG�!L which assigns a label l 2 L to each
pixel Pi 2 IXYG where / is piecewise smooth and consistent with
the original data. Thus, our energy function for the graph-cut min-
imization is given by

Eð/Þ ¼ Edatað/Þ þ j1 � Esmoothð/Þ þ j2 � Elabelð/Þ ð7Þ
where j1 is the weight of the smoothness term and j2 the weight of
the label term.
In order for the energy function to be defined we need to first
define a cost function Dðti; tjÞ�!a which will determine the cost
(or similarity/dissimilarity) of two tensors ti; tj.

5.1.1. Design of cost function Dðti; tjÞ
The cost function Dðti; tjÞmust be designed in such a way that it

would possess the following desirable properties:

� In the case of two stick tensors ti; tj, the orientation difference eði;jÞmax

i.e. the difference of the local surface normals (eti
max; e

tj
max) of the

two tensors, and the eigenvalue differences kði;jÞð1;2Þ indicating the
likelihood of the tensor being a surface, are compared, where,
eði;jÞmax ¼ keti
max � e

tj
maxk

kði;jÞð1;2Þ ¼ kðk
ti
1 � kti

2 Þ � ðk
tj
1 � k

tj
2 Þk

ð8Þ
� In the case of two plate tensors ti; tj, the orientation difference

eði;jÞmin i.e. the difference of the local tangents (eti
min; e

tj

min) of the

two tensors,and the eigenvalue differences kði;jÞð2;3Þ indicating the
likelihood of the tensor being a curve, are compared where,
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eði;jÞmin ¼ ke
ti
min � e

tj

mink
kði;jÞð2;3Þ ¼ kðk

ti
2 � kti

3 Þ � ðk
tj
2 � k

tj
3 Þk

ð9Þ
� In the case of junctions, only the eigenvalue differences kði;jÞð3Þ are
compared since there is no orientation preference, where,
kði;jÞð3Þ ¼ kðk
ti
3 � k

tj
3 Þk ð10Þ
Fig. 8. Energy function D.
� Large differences in the orientations of two neighboring (stick
or plate) tensors are heavily penalized, except in the cases
where the eigenvalues are close to being identical. This excep-
tion is necessary to overcome the problem occurring when
the initial orientation and the new orientation vary slightly.
This occurs whenever the new label orientations are fewer than
the initial label orientations: in the case of the curves, there can
be an arbitrary number of tangents whereas the Gabor func-
tions are only tuned on eight orientations; similarly in the case
of surfaces, there can be an arbitrary number of surface normals
whereas the Gaussian hemisphere possibly does not (depending
on the radius).
� Small differences in the orientations of two neighboring (stick

or plate) tensors are favored, even in cases where the eigen-
values are not close to being identical. This property ensures
that the alignment of the orientations has a higher precedence
over the equality of the eigenvalues. For example if two neigh-
boring plate tensors have the same orientation but different
eigenvalues due to different values in the response images, we
would still want to classify them as curves.

Taking into account the above desirable properties we define
the comparison cost function Dðti; tjÞ as,

Dðti; tjÞ ¼ 3�

e
kði;jÞð1;2Þ

� �keði;jÞmaxk
2

; iff ti; tj 2 Tstick

e
kði;jÞð2;3Þ

� �keði;jÞ
min
k2

; iff ti; tj 2 Tplate

e
kði;jÞð3Þ

� �
; iff ti; tj 2 Tball

0; otherwise

8>>>>>>>>>><>>>>>>>>>>:
ð11Þ

where Tsurface; Tcurve; Tball are sets of surface, curve and ball tensors
respectively. The eigenvectors and eigenvalues in Eq. (11) are the
result of decomposing the two tensors ti; tj (Eq. (12)) based on the
spectrum theorem in Eq. (5).

ti / h ~emax
ti ; ~emid

ti ; ~emin
ti i; hkti

1 ; k
ti
2 ; k

ti
3 i

tj / h ~emax
tj ; ~emid

tj ; ~emin
tj i; hktj

1 ; k
tj
2 ; k

tj
3 i

ð12Þ

The three conditional cases encoded in the comparison cost
function Dðti; tjÞ are shown in Fig. 8.

5.1.2. Implementation issues
The minimum and maximum eigenvalue and eigenvector dif-

ferences, between two tensors ti; tj of the same feature type are
computed as follows:

� The eigenvectors and eigenvalues are computed using House-
holder-QL algorithm (Press et al., 1986). The sign ambiguity is
resolved by checking the sign of the sum of the signed inner
products and determining the eigenvectors consistently i.e. if
the sum of the signed inner product is negative then the eigen-
vectors are negated.
� The eigenvalues are normalized during the encoding to the ten-

sorial representation and are in the range of ½0;1�. In the first
case, during the encoding of the Gabor responses to tensors
the computed tensors are scaled by the normalized intensity
of the response v as shown in Algorithm 1. In the second case,
during the encoding of the Gaussian hemisphere normals to
tensors, the computed tensors are scaled by the grayscale value
v ¼ Ck

255 as shown in Algorithm 2. Thus, the minimum eigenvalue
difference between two tensors ti; tj is kði;jÞ ¼ 0. Similarly, the
maximum eigenvalue difference between two tensors ti; tj is
kði;jÞ ¼ 1.
� The eigenvectors correspond to the Gabor filters’ orientations

and to the normals of the Gaussian hemisphere. The minimum
occurs in the trivial case where the orientations are identical,
hence the square of the magnitude of the minimum eigenvector
difference between two tensors ti; tj is eði;jÞ ¼ 0. Similarly, the
square of the magnitude of the maximum eigenvector differ-
ence occurs when two orientation vectors are opposing, e.g.
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h1; 0i and h�1;0i. In this case, the square of the magnitude of
the maximum eigenvector difference between two tensors
ti; tj is keði;jÞk2 ¼ 4.

As previously mentioned the cost function Dðti; tjÞwas designed
in a way such that the properties described in Section 5.1.1 would
be encompassed. In addition to these properties, an exponential
form was chosen for the cost function to address instability issues
during the optimization by Graph-Cuts:

� Firstly, the exponential form ensures that the cost associated
with each feature type will have the same geometrical repre-
sentation. Not using the exponential form would implicitly
introduce a bias towards a particular feature type, i.e. in this

case the cost associated with surfaces kði;jÞð1;2Þ

� �keði;jÞmaxk
2

 !
and

curves kði;jÞð2;3Þ

� �keði;jÞ
min
k2

 !
changes non-linearly whereas the cost

associated with junctions changes linearly kði;jÞð3Þ

� �
.

� Similarly, the exponential form ensures that the cost associated
with each feature type have the same range of values. Not using
the exponential form would again implicitly introduce a bias
towards the feature type with the smallest values.

Hence, the use of this particular exponential form is necessary
to overcome biases towards a particular feature type during
optimization.

To demonstrate the use of the cost function, consider the fol-
lowing example where two tensors ti; tj are identical therefore,
both the eigenvalue and eigenvector differences are zero, e.g.
kði;jÞ ¼ 0; eði;jÞ ¼ 0. In this case, the cost function Dðti; tjÞ reduces to
the following,

Dðti; tjÞ ¼ 3�

e 0ð Þ0 ¼ 3� e1 ¼ 0:28; iff ti; tj 2 Tstick

e 0ð Þ0 ¼ 3� e1 ¼ 0:28; iff ti; tj 2 Tplate

e0 ¼ 3� e0 ¼ 2; iff ti; tj 2 Tball

0 ¼ 3� 0 ¼ 3; otherwise

8>>>><>>>>: ð13Þ

If in the above example, the two tensors ti; tj had the same
eigenvalue but maximally different eigenvector differences, e.g.
kði;jÞ ¼ 0; eði;jÞ ¼ 4 the cost function Dðti; tjÞ would instead become
the following,

Dðti; tjÞ ¼ 3�

e 0ð Þ4 ¼ 3� e0 ¼ 2; iff ti; tj 2 Tstick

e 0ð Þ4 ¼ 3� e0 ¼ 2; iff ti; tj 2 Tplate

e0 ¼ 3� e0 ¼ 2; iff ti; tj 2 Tball

0 ¼ 3� 0 ¼ 3; otherwise

8>>>><>>>>: ð14Þ

As it is evident, the function returns a large cost value if two ten-
sors are similar and a small cost value otherwise. This is so, because
if two tensors are similar we would want to penalize heavily for
relabeling them differently, hence the large cost value. Similarly,
if two tensors are not similar then we would not want to penalize
Table 2
The comparison function varies according to the feature type passing through the
pixel in question.

Dðti; tjÞ Tstick Tplate Tjoint

Tstick

3� e
kði;jÞð1;2Þ

� �k ~emax
ti � ~emax

tj k2 3 3

Tplate 3

3� e
kði;jÞð2;3Þ

� �k ~emin
ti � ~emin

tj k2 3

Tjoint 3 3
3� e

kði;jÞð3Þ

� �
a different relabeling, hence the small cost value. The cost values
returned by the cost function are in the range ½0:28;3�. Table 2
shows how the comparison function varies according to the feature
type passing through the pixel in question. The cost function Dðti; tjÞ
is then used to define the energy functions
Edatað/Þ; Esmoothð/Þ; Elabelð/Þ as follows.

5.1.3. Energy data term Edatað/Þ
The data term provides a per-pixel measure of how appropriate

a label l 2 L is, for a pixel Pi 2 IXYG in the observed data and is given
by,

Edatað/Þ ¼
X
Pi2I

DðPi;/ðPiÞÞ ð15Þ

where DðPi;/ðPiÞ measures the difference between the existing
label tPi

, i.e. the tensor produced by the local Gabor response and
normal orientation at the pixel Pi, and a new label /ðPiÞ 2 L, as
defined in Eq. (11).

5.1.4. Energy smoothness term Esmoothð/Þ
The smoothness term provides a measure of the difference

between two neighboring pixels Pi; Pj 2 IXYG with labels li; lj 2 L
respectively. Let tPi

and tPj
be the initial tensors of the neighboring

pixels in the observed data Pi; Pj 2 I respectively. We define a prior
measure of the observed smoothness between pixels Pi and Pj as
DðPi; PjÞ.

In addition, we define a measure of smoothness for the global
minimization. Let li ¼ /ðPiÞ and lj ¼ /ðPjÞ be the orientations under
a labeling /. We define a measure of the smoothness between
neighboring pixels Pi; Pj under a labeling / as eDðPi; PjÞ ¼ Dðli; ljÞ

Using the smoothness prior defined for the observed data and
the smoothness measure defined for any labeling / we can finally
define the energy smoothness term as follows,

Esmoothð/Þ ¼
X
ðPi ;PjÞ2@

VPi ;Pj
ð/ðPiÞ;/ðPjÞÞ ð16Þ

Esmoothð/Þ ¼
X
ðPi ;PjÞ2@

ffiffiffi
2
p
� e�

ðDðPi ;Pj ÞÞ
2

2�r2

" #eDðPi; PjÞ ð17Þ

Esmoothð/Þ ¼
X
ðPi ;PjÞ2@

KðPi ;PjÞDðli; ljÞ ð18Þ

where @ is the set of neighboring pixels, KðPi ;PjÞ ¼
ffiffiffi
2
p
� e�

DðPi ;Pj Þ
2

2r2

" #
is

the smoothness prior and gives an estimate of the smoothness
between two neighbors, and r controls the smoothness uncertainty.
Since the cost function DðPi; PjÞ is strictly positive i.e. never zero or
negative for any choice of Pi; Pj, it is convenient to express the
smoothness prior KðPi ;PjÞ as exponential. The exponential representa-
tion of KðPi ;PjÞ is called the Boltzmann distribution and the smooth-
ness uncertainty r (corresponding to the temperature T term of
the Boltzmann distribution) controls the variation in the smooth-
ness between the two neighbors in the observed data. When deal-
ing with Markov Random Fields, it is very common that the clique
potentials are modeled in the form of /iðxiÞ ¼ eðDðxiÞÞ , where
DðxiÞ is an energy function over values of xi. This particular form
is preferred whenever the opposite effect of the energy function is
required i.e. a lower probability for high energy configurations
and vice-versa.

Intuitively the meaning of the smoothness term is the follow-
ing: if two neighboring pixels Pi and Pj have similar tensors in
the observed data, then DðPi; PjÞ will be small, therefore KðPi ;PjÞ will
be high which means there will be a higher probability of ~DðPi; PjÞ
being small. In all our experiments the smoothness uncertainty is
set to r ¼ 0:25.
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5.1.5. Energy label termElabelð/Þ
The label term penalizes each unique label which appears under

a labeling / (Delong et al., 2012). We define the label term as
follows,

Elabelð/Þ ¼
X
l2L

hl:flð/Þ ð19Þ

where hl is a non-negative label cost of label l and set to hl ¼ 1 for
all labels and, flð/Þ is a function which indicates whether a label is
unique under a labeling / and is defined as,

flðf Þ ¼
1; 9P : / ¼ l

0; otherwise:

�
ð20Þ

Intuitively, the label term penalizes each unique label that exists
under the labeling / i.e. it favors a minimal set of labels.

Finally, the energy function Eð/Þ in Eq. (7) penalizes heavily for
variations between neighboring pixels of similar geometric type
(and orientation in the case of surfaces and curves), and vice versa,
which results in a better defined segmentation of the image. More-
over, it penalizes heavily any unique labels which have not been
assigned to any pixels thus eliminating unnecessary tensor labels
as we demonstrate in Section 7.
Fig. 9. (a) The feature types are color-coded using three colors. Red indicates a
surface, green indicates a curve and blue indicates neither i.e. a junction. (b) The
resulting, color-coded clusters. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. The single mode and bi-modal Gaussian-based kernels.
5.1.6. Energy minimization using Graph-Cuts
The energy minimization is performed using the a-expansion

algorithm. For each iteration, the algorithm selects a tensor label
a 2 L, and then finds the best configuration within this a-expan-
sion move. If the new configuration reduces the overall energy
Eð/Þ in Eq. (7), the process is repeated. The algorithm stops if there
is no a that decreases the energy. The a expansion algorithm
requires that the user-defined energy is regular and thus graph-
representable (Kolmogorov, 2004). Kolmogorov also proves that
any class F2 functions of one variable are regular, hence the label
term Elabelðf Þ in Eq. (19) is regular.

Fig. 9(a) shows the result of the application of the optimization
on the simple case shown in Fig. 2(b). As mentioned earlier, each
pixel is classified as a surface (shown in red), curve (shown in
Fig. 11. Test case 1: An example of a complex urban satellite image with roads of
varying width.
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green) or neither (shown in blue) i.e a junction. Fig. 9(b) shows the
resulting clusters. In this example, 57 different clusters were iden-
tified. It should be noted that although the number of new labels
used is sufficient for this type of data, the time required for the seg-
mentation and classification is directly dependent on this number.
Therefore, considerably increasing the number of new labels will
result in considerable computational time required. The time
required for the sample image was 36 s.

6. Road extraction

The result of the Tensor-Cuts segmentation is a set of features of
multiple types and their associated orientation preference, in the
cases of surfaces and curves.

6.1. Road model

In order to proceed with the processing we first have to define
the road model. The road model is defined in terms of various geo-
metric characteristics and its function as follows:
Fig. 12. Urban area test case 2 (left colu
1. A road is a curvilinear structure.
2. A road has width and orientation which may locally vary

smoothly.
3. The area of the road is of uniform color.
4. The length is always larger than the width.

This assumption is true even in local small patches as long as
the size of the patch is larger than the width.

5. All roads must lead to somewhere.
This means that when considering a satellite image there has to
exist at least one road intersecting the boundaries of the image.

6.2. Detection of candidate road center-points

A similar road model to the above was used by Poullis and You
(2010). In their work the authors developed a set of single-mode
and bi-modal Gaussian-based kernels in order to measure the like-
lihood of an image pixel being a road center-point. We improve the
efficiency of their approach by selectively applying the set of sin-
gle-mode and bi-modal Gaussian-based kernels of different orien-
tations and widths. The variable widths and orientations account
mn) and test case 3 (right column).



Fig. 14. Close up of Fig. 15(a). The Gaussian-based kernels respond only on pixels
that are in the middle of parallel classified curves (i.e. green) and whose in-between
area is classified as a surface (i.e. red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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for the characteristic that roads can have locally varying width and
orientation.

Fig. 10 shows the set of single and bi-modal Gaussian-based
kernels. In our experiments, the number of orientations is set to
sixteen and the number of widths to eight in the range of ½0;2pÞ
and ½10px;60pxÞ, respectively. The bi-modal kernel is designed in
such a way that pixels classified as road candidates will respond
to it if they are aligned with the center line, having two parallel
lines off their axis; corresponding to the side-walks. Similarly,
the single-mode kernel is designed in such a way that pixels clas-
sified as road candidates will respond to it if they are aligned with
the center line, having neighboring candidate road pixels between
the parallel lines.

We exploit the characteristic that roads must lead to somewhere
and that at least one road will intersect the boundaries of the image.
Hence, instead of applying the kernels to all road candidates
(Poullis and You, 2010), we selectively apply the kernels only on
the image boundaries. Intuitively, the kernels are used to find an
entry point to the image from which any traditional template fitting
technique can be applied for road tracking. This considerably
reduces the computational time needed. In the experiments shown,
we use a brute-force template matching variant of the approach
presented in Zhao and You (2012) and Poullis et al. (2008).
Fig. 13. Urban area test case 4. Compa
7. Experimental results

We have extensively tested the proposed method and report
the results. For all the experiments shown the parameters control-
ling the smoothness and label cost terms in Eq. (7) are j1 ¼ 60 and
j2 ¼ 40.
rison with Poullis and You (2010).
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Fig. 11(a) shows an example satellite image. The sum of the
response images resulting from the application of the bank of
Gabor jets is shown in Fig. 11(b). The resulting saliency map result-
ing is shown in Fig. 11(c). The orientation map corresponding to
the saliency map in Fig. 11(c) according to their feature type. For
example, if a pixel is classified as part of a surface then the orien-
tation represents the normal to that surface. Similarly, if a pixel is
classified as part of a curve then the orientation represents the tan-
gent to that curve. Pixels classified as junctions do not have any
orientation preference, hence the orientation map contains no
value.

The saliency map is further used in the extraction of the center-
points. The single-mode Gaussian-based kernel is applied on the
surface pixels of the image, i.e. red channel and the bi-modal
Gaussian-based kernel is applied on the curve pixels of the image,
i.e. green channel. The advantage of the approach is that even in
the case where the road is not clustered in its entirety it can still
be tracked if the road part closest to the image boundaries is
detected. Once a candidate center point is identified on the bound-
aries, an iterative template fitting process such as Zhao and You
Fig. 15. Images from the dataset in Das et al. (2011). (a) Input image. (b) C
(2012) is used to track the road network. In the case where no
other roads can be tracked, the process is repeated and another
candidate boundary center-point is identified using the aforemen-
tioned method.

Fig. 11(e) shows the resulting road network extracted with the
aforementioned technique. All roads are successfully extracted
except from the main road. This is due to the range of the widths
of the single and bi-modal Gaussian-based kernels. Adjusting the
width to include all the various road sizes occurring in an image
can resolve this problem, however it will increase the computa-
tional time. The time required for the segmentation and classifica-
tion step is 00:01:26 s. The image size is 1297 � 454.

Fig. 12(a) shows an urban area. The resulting saliency map is
shown in Fig. 12(c) and the result after the application of the road
extraction is shown in Fig. 12(e). There were 31 clusters returned.
As it is evident in this case, all roads have been successfully
extracted.

Similarly, Fig. 12(b) shows another urban area. The resulting sal-
iency map is shown in Fig. 12(d) and the result after the application
of the road extraction is shown in Fig. 12(f). In this case, 87 clusters
lassification into the three feature types. (c) Extracted road network.
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were created. In this example, it can be seen that in addition to the
actual roads, houses are also erroneously extracted. This is due to
the fact that the houses in this case have very close proximity to
each other and also have the similar appearance as the roads.

Fig. 13(a) shows a satellite image of an urban area in Las Vegas,
USA. The result of the automatic classification using TensorCuts is
shown in Fig. 13(b) and the classified surfaces are shown in
Fig. 13(c). The semi-automatic extraction of the centerlines i.e.
curves using the method introduced in Poullis and You (2010) is
shown in Fig. 13(d). The final results of the two methods are shown
in Fig. 13(e) and (f), respectively. As expected, the semi-automatic
method slightly outperforms the automatic method presented in
this paper. However, user interaction is required at the beginning:
the user is required to mark sample areas of foreground and back-
ground ‘‘objects’’ in order for the segmentation to succeed. In our
case, there is no user interaction whatsoever and the resulting sal-
iency map includes not just curves but also surfaces and junctions.
Both the final results, seem to verify that the success of any algo-
rithm in this context is strongly coupled with the successful result
of the segmentation algorithm.

Fig. 15 shows the results for images of the dataset in Das et al.
(2011). The images are of low resolution and depict road networks
in different settings, i.e. of a developed suburban, developed urban
and emerging suburban area. Fig. 15(b), (e), and (h) show the
results of the application of TensorCuts. As it is evident, the classi-
fications for the images in Fig. 15(a) and (g) contain many surfaces
since there are large areas of smooth intensity variations. However,
the Gaussian-based kernels respond only on points which lie
between parallel classified curves whose in-between area is classi-
fied as a surface as shown in Fig. 14.

Despite the low resolution of the satellite images, the proposed
method performs very well with a more than 95% completeness in
all test cases. Although admittedly the method proposed in Das
et al. (2011) slightly outperforms the proposed method in the test
case of Fig. 15(d) and of Fig. 15(g), it should be noted that it uses at
least 14 user-defined parameters in order to achieve these results;
as reported in Das et al. (2011) – 3 these parameters are empiri-
cally obtained and any changes in the input data will require the
parameters to be empirically tuned again for optimal parameter
selection. As previously mentioned in Section 1, one of the primary
motivations of the proposed method is the elimination (or at least
reduction to a minimum) of the data-dependent thresholds.

7.1. Evaluation

The proposed method was evaluated in terms of the following
well-established metrics as introduced by Wiedemann and Hinz
(1999):
Table 3
Quantitative evaluation results for the test cases shown in this paper, in terms of the
three evaluation metrics: completeness, correctness, and quality.

Image Completeness Correctness Quality

Test case 1 72.2 62.1 51.6
Test case 2 94.3 79.2 81.5
Test case 3 82.9 74.3 76.8
Test case 4 68.1 64.3 61.9

Table 4
Quantitative evaluation results for the test cases shown Fig. 15, in terms of the three
evaluation metrics: completeness, correctness, and quality.

Image Completeness Correctness Quality

Developed suburban 99.6 96.4 95.3
Developed urban 2 96.2 98.3 94.6
Emerging suburban 3 95.7 96.4 92.4
� Completeness: the ratio of the true positives over the sum of the
true positives and false negatives.
� Correctness: the ratio of the true positives over the sum of the

true and false positives.
� Quality: the ratio of the true positives over the sum of the true

and false positives and false negatives.

The above parameters, i.e. true positives, false positives and
false negatives are determined based on existing geographical dat-
abases. In cases where no such information is available, we manu-
ally indicate the ground truth. The results are shown in Tables 3
and 4. As it can be seen, the algorithm performs quite well in
non-very complex cases such as the images from the dataset in
Das et al. (2011) shown in Fig. 15 however, in complex cases where
the buildings and the road network exhibit the same reflectance
properties, it seems not to perform as well.
8. Conclusion

We have presented a framework for simultaneous segmenta-
tion and classification of image features, called Tensor-Cuts. The
unique characteristic of the proposed framework is that it requires
no thresholds. This is due to the fact that all information is encoded
using a tensorial representation and optimized using Graph-Cuts.

Moreover, we have presented how this framework is particu-
larly suitable for applications in remote sensing and in particular
for pre-processing satellite images for road extraction, since they
contain mostly linear features. The proposed framework has been
extensively tested on images of various contexts and the results
are very promising.
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