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ABSTRACT: 
 
In this paper, main challenges of underwater photogrammetry in shallow waters are described and analysed. The very short camera to 
object distance in such cases, as well as buoyancy issues, wave effects and turbidity of the waters are challenges to be resolved. 
Additionally, the major challenge of all, caustics, is addressed by a new approach for caustics removal (Forbes et al., 2018)  which is 
applied in order to investigate its performance in terms of SfM-MVS and 3D reconstruction results. In the proposed approach the 
complex problem of removing caustics effects is addressed by classifying and then removing them from the images. We propose and 

test a novel solution based on two small and easily trainable Convolutional Neural Networks (CNNs). Real ground truth for caustics 
is not easily available. We show how a small set of synthetic data can be used to train the network and later transfer the learning to 
real data with robustness to intra-class variation. The proposed solution results in caustic-free images which can be further used for 
other tasks as may be needed.  
 

1. INTRODUCTION 

1.1 Motivation 

Underwater 3D modelling and mapping techniques are based on 

various systems and methodologies but the most accurate of 
them are based on images as primary data. However, despite the 
relative low cost of such methods in relation to others, they 
suffer a major drawback; optical properties and illumination 
conditions of water severely affect image quality. Light is 
absorbed linearly to depth, resulting in a green-blue image due 
to strong absorption in red wavelength. Therefore, the red 
channel histogram has less information in comparison to green 

and blue. In addition, water absorbs light energy and scatters 
optical rays creating blurred images.  
 
Even though the above phenomena affect RGB imagery in 
every depth, when it comes to shallow waters, caustics, the 
complex physical phenomena resulting from the projection of 
light rays being reflected or refracted by a curved surface, 
seems to be the main factor degrading image quality.  
 

The implemented novel solution is based on two small and 
easily trainable CNNs (Convolutional Neural Networks). This 
approach demonstrates how a small set of synthetic data can be 
used to train the network and later transfer the knowledge to 
real data with robustness to intra-class variation. The 
implemented solution results in caustic-free images, which can 
be used for other applications. The above-mentioned approach 
is applied in a real world underwater site with depth varying 

from 0.5-1.5 meters. Imagery acquisition is characterized by 
intense caustics effect, which in many cases made matching on 
the initial imagery almost impossible. Moreover, in the 

following sections, the main challenges of underwater 
photogrammetry in shallow waters are described and analysed.  
 

1.2 Main challenges of underwater photogrammetry in 
shallow waters 

Underwater photogrammetry in shallow waters does not present 
some of the major problems of its counterpart in deep waters 

such as limited natural illumination, limited time etc., however, 
various other issues may affect the acquisition and processing 
stages. 
 

1.2.1 During the acquisition  
The definition of ‘shallow’ water is quite general. As a general 
rule, when the object is up to 10 metres in depth in clear water, 
water caustics by refraction effects may become a problem for 
all passive optical sensors. Unlike deep water photogrammetric 

approaches, where midday might be the best time for data 
capturing due to brighter illumination conditions, when it comes 
to shallow waters, the object to be surveyed needs strong 
artificial illumination, or images taken under overcast 
conditions, or with the sun low on horizon, in order to avoid 
lighting artefacts on the seabed. Besides lighting issues, during 
the acquisition phase, shallow water poses additional problems 
for diver based photogrammetric acquisition because of greater 

difficulty to control buoyancy (Bowens, 2011; Seinturier et al., 
2004, Menna et al., 2013). To that direction, the waves may 
affect the stability of the diver and camera and change 
significantly its path. Similar effects may appear in deep water 
photogrammetric applications because of strong currents. 
 

Usually in underwater photogrammetric tasks, a small camera-
to-object distance is selected to avoid absorption and achieve 
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high resolution details and better accuracy. In shallow waters, 

where  archaeological finds are usually ruins, the small camera-
to-object distance (less than 1m) is not always desirable or 
achievable. Really short camera-to-object distances lead to 
significant increase of acquired data, since the camera footprint 
on the seabed is reduced, the image scale is enlarged, thus 
resulting in higher processing time and larger storage 
requirement. In some extreme cases, of small depth there is not 
enough space for the diver and the camera. To overcome this, 

either cameras equipped with fisheye lenses are used, or two 
media photogrammetric approaches are adopted such as the one 
presented in Georgopoulos and Agrafiotis (2012). Other issues 
affecting the shallow water coastal area is the turbidity caused 
by the waves, floating objects etc. 
 

1.2.2 During processing 
The aforementioned problems during the acquisition phase, are 
also affecting processing of the collected data. Due to the small 

camera-to-object distance, a large amount of data has to be 
processed, increasing cost and time in real life applications. The 
above, together with caustics and illumination effects are 
affecting image matching algorithms and are the main cause for 
dissimilarities in the generated textures and orthoimages, if they 
are the final results. Regarding the caustics effect, which is the 
problem that is analysed in this paper, they throw off most of 
the image matching algorithms, leading to less accurate 

matches.  
 

2. IMPLEMENTED APPROACH FOR CAUSTICS 

REMOVAL 

2.1 Related work 

For many years, the computer graphics research community has 
focused on the generation of caustics and as a result many 
techniques have been proposed which generate photorealistic 

results. At the same time only a few techniques have been 
proposed for the removal of caustics from images and video in 
the context of image enhancement. We provide a brief overview 
of the most relevant work to caustics removal. Trabes et al 
(Trabes et al, 2015) propose a technique which involves tuning 
a filter for sunlight-deflickering of dynamically changing 
underwater scenes. They employ a continuous parameter 
optimization inside a basic filter, which provides feedback for 

further improving the performance of the filter. Being an 
optimization the filter's performance is highly sensitive to sub-
optimal parameters and in particular, the segmentation 
parameter which is part of the objective function in the 
optimization. A different approach was proposed in (Gracias et 
al, 2008) where a mathematical solution was presented 
involving the calculation of the temporal median between 
images within a sequence. A strong assumption of this work, is 
the fact that feature matching [Harris corner detection variant in 

Gracias and Santos-Victor (2000)] is employed for the 
formation of the sequence which makes this approach very 
susceptible to the light variations in the images and in particular 
caustics effects. 

The same authors later extend their work in (Shihavuddin et al, 

2012) and propose an online sunflicker removal method which 
treats caustics as a dynamic texture. As reported in the paper 
this only works if the seabed or bottom surface is flat. Similar 
approaches have also been proposed for general cases of 
dehazing and descattering of images such as (Joshi et al, 2010), 
(He et al, 2011), (Fattal et al, 2008). 

 
In (Schechner et al, 2004) the authors propose a method based 

on processing a number of consecutive frames. These frames 
are analyzed by a non-linear algorithm which preserves 
consistent image components while filtering out fluctuations. 
Their proposed method however does not take into account the 
camera motion which almost always leads to  registration 
inaccuracies. Despite the innovative and complex 
aforementioned techniques, addressing caustic removal with 
procedural methods requires that strong assumptions are made 
on the many varying parameters involved e.g. scene rigidity, 

camera motion, etc.  
 

2.2 Convolutional Neural Networks Architecture 

The proposed solution in (Forbes et al, 2018) consists of two 

CNNs, SalienceNet and DeepCaustics and are described below. 
 

SalienceNet: The input to SalienceNet is a rendered RGB 
image containing caustics of an underwater scene. The network 
operates on a batch of 32 images of size 400x400. Each pixel of 
the output image takes a value in the range of [0,1], 
corresponding to the confidence of caustics occurring at that 
pixel.  After extensive experimentation, we have concluded that 

the network architecture with the optimal performance consists 
of four hidden layers; the first two consisting of 3 and 5 
convolution filters respectively, and the last two consisting of 5 
and 1 de-convolution filters respectively. The filter sizes are 
5x5, 3x3, 3x3, 5x5 in each layer respectively. This results in a 
total of 2x(5x3x3) + (4x5x5) weight parameters and 8 + 6 bias 
parameters, for a total of 204 parameters to be learned. After 
each convolution/deconvolution in the network follows a ReLU 

activation unit. Initially, sigmoid activation units were used in 
the last layer to ensure that the final output is in the range [0,1] 
however, our experiments have shown that ReLU units perform 
better [they still map the output in the range [0,1] provided the 
input data falls within the manifold learned] and, in addition 
computing the gradients becomes more stable during back-
propagation i.e. no 'squashing' leading to vanishing gradients. 
Adding more units and/or more layers has also been tested, but 
with no noticeable improvements. Larger filter sizes were also 

tested, but yielded blurry results. In order to get reasonable 
results with an initial layer consisting of larger filters, more 
layers with decreasing filter size were needed, but this required 
a reduction in the size of the images in the data set, due to 
memory constraints, and added no significant advantages. A 
diagram of the network's architecture, chosen based on all the 
experimental evaluations and considerations described above, is 
shown in Figure 1. 

 

Figure 1. SalienceNet: a 4-layer CNN consisting of 2 convolutional layers followed by 2 deconvolutional layers. A ReLU activation 
unit follows each [de-]convolution operation. All [de-]convolution kernels have size 3 × 3. 



 

DeepCaustics: The input to DeepCaustics is the pair of an 

image containing caustics and the saliency map generated by 
SalienceNet. The two are first coupled together into a 4-channel 
RGBA format where the fourth channel contains the saliency 
value for the corresponding pixel. The ground truth used for 
training is a rendered caustic-free image corresponding to the 
synthetic input images. The network operates on a batch of 16 
images of size 400x400. The output of the network is a caustic-
free RGB image corresponding to the input. After extensive 

experimentation, we have concluded that the network 
architecture with the optimal performance consists of six hidden 
layers; the first three consisting of 4, 2, and, 7 convolution 
filters respectively, the last three consisting of 7, 2, and 3 de-

convolution filters respectively. The filter sizes are 3x3, 7x7, 

3x3, 3x3, 7x7, 3x3 in each layer respectively. This results in a 
total of (4x3x3) + 2x(2x7x7) + 2x(7x3x3) + (3x3x3) weight 
parameters and (4 + 2x2 + 2x7 + 3) bias parameters, for a total 
of 410 parameters to be learned.  
 
Similarly to SalienceNet, after each [de-]convolution in the 
network follows a ReLU activation unit. Figure 2 shows the 
architecture of the DeepCaustics network. The results of the 

proposed method are the original images without color transfer 
and histogram matching (Figure 3, middle column) and the 
caustic-free images generated by DeepCaustics on the color 
matched RGB images shown in Figure 3, right column. 

 

Figure 2. DeepCaustics: a 6-layer CNN consisting of 3 convolutional layers followed by 3 deconvolutional layers. A ReLU activation 
unit follows each [de-]convolution operation. 

2.3 Dataset used 

The imagery used presents a large variability in terms of colour, 
frequency and shape of the caustics. Data were acquired using 
two GoPro Hero 4 Black action cameras with image dimensions 
of 3000 x 2250 pixels, focal length of 2.77μm and pixel size of 

1.55μm. The dataset was captured in a near-shore underwater 
site at depths varying from 0.5 to 2 meters. No artificial light 
sources were used. Due to the wind, the turbulent surface of the 
water created dynamic sun flicker (caustics) on the seabed. 
Tests were performed using selected small datasets of different 
areas and depths over the test site. Five different datasets were 
used. One of them (the fifth in Figure 3, dataset 5), consists of 
video frames from the same camera, therefore image, i.e. frame 
dimensions are smaller: 1920 x 1080 pixels. 

3. APPLICATION AND RESULTS 

In Figure 3, results of the caustics correction algorithm are 
presented over a number of images. There, the original RGB 
images (uncorrected images), which contain caustics of varying 
characteristics, are presented in the first column, while the 

images which were processed using the network and then 
histogram matched to the colour transferred image (corrected ct 
images) are presented in the middle column. Finally, in the right 
column, the caustic-free images which were processed using the 
network and then histogram matched to the original image are 
shown (corrected orig. images).  
As it is obvious, in most of the datasets, the caustics have been 
strongly reduced and therefore further processing with SfM-
MVS techniques is possible. 

 

 
 

  

   



 

 
 

  

 
 

  

   
 

Figure 3. The five different datasets used: on the first row, an image from dataset 1, of the following rows, images from the 
respective datasets 2, 3, 4 and 5. Left column: The original RGB images, which contain caustics of varying characteristics. Middle 
column: The images which were processed using the network and then histogram matched to the colour transferred image. Right 

column: The caustic-free images which were processed using the network and then histogram matched to the original image. 
 

4. EVALUATION 

Apart from the visual evaluation of the results and their 
histograms comparison, the effectiveness of the applied method 
on caustics removal is evaluated by several tests for key point 
extraction and matching and 3D reconstruction through SfM-

MVS processes. 3D reconstruction was tested in Agisoft’s 
Photoscan software while for key point matching, Agisoft’s 
Photoscan software and other descriptors such as SIFT (Lowe, 
1999) and SURF (Bay et al., 2006) were used. Main goal of this 
evaluation is to investigate how the caustics affect the matching 
process and the 3D reconstruction in order to extract valuable 
results about the proposed algorithm performance and caustics 
effect in general. 

 
4.1 Visual inspection/histograms 

Together with the visual inspection and evaluation of the caustic 
corrected imagery, the histograms of the five examples 
presented in Figure 3 are shown in Figure 4. There, the 

histogram of the green channel of the uncorrected image is 
plotted in magenta colour, the histogram of the green channel of 
the corrected ct image is plotted in yellow colour and finally, 
the histogram of the green channel of the corrected orig. image 
is plotted with green colour. In the red rectangular on each 
histogram, the peak around 250-255 representing the caustics 
effects is highlighted.  
 

 

 



 

 

 

 
Figure 4. The respective histograms of the example images 

presented in Figure 3. 
 
As it is observed, this peak does not exist in yellow and green 
histograms, which means that the caustics effect is strongly 
removed. Another fact observed is that in all of the cases, the 

final corrected image is darker than the initial one, since the 
majority of the brightness values are moved to the left. 
 
4.2 Key point matching 

The goal of this performed tests was to evaluate the effect of the 
caustics removal approach on SfM processing. For that, a 
commercial software performing SfM-MVS was used, the 
Agisoft’s Photoscan as well as other key point descriptors such 
as SIFT (Lowe, 1999) and SURF (Bay et al., 2006). In the tests 
performed using the Agisoft’s Photoscan, an image pair of the 
five different datasets was inserted and the alignment step was 
performed. Regarding the key point detection and matching, 

using the in-house implementations, the following procedure 
was followed, using exactly the same image pairs.  
 
Feature Detection and Matching: Firstly, the key points were 
detected on the imagery. Scale Invariant Feature Transform 
(SIFT) (Lowe, 2004) extracts features invariant to image scale, 
rotation and translation and partially invariant to illumination 
changes. Speeded Up Robust Features (SURF) (Bay et al., 

2008) is based on the assessment of the Hessian matrix. SURF 

also combines both detection and description but it outperforms 
SIFT in terms of speed. Then, the similar kinds of features were 
identified in the scene. The detected features on the first image 
were then matched to the corresponding features on the second 
image and a mapping of these features between these two 
images was stored in a vector. This matching is based on n-
space Euclidean distance, and performed both from left-to-right 
and right-to-left for redundancy. 

 
Filtering of Matched points: Finally, the filtering of these 
matched points took place. In feature matching, several blunders 
might occur. The RANSAC algorithm is utilized to identify the 
inliers of the obtained point correspondences. The algorithm 
takes all the matched points as input, formulates a mathematical 
model that incorporates the majority of the points, and filters 
out the remaining points which are considered as outliers 
(Fischler and Bolles, 1987). To accomplish that, the 

fundamental matrix is computed and the measure for 
thresholding inliers points is the distance from the epipolar line. 
For this paper, the maximum distance from a point to an 
epipolar line in pixels, beyond which the point is considered an 
outlier was set at 3 pixels and the desirable level of confidence 
(probability) that the estimated matrix is correct to 99%. At the 
end of this step, a set of matched points is found in the given 
scenes. Results of the matching process are given in Table 1. 

There, the total matched points and the valid ones –the output of 
the RANSAC filtering- are presented. 

 

   
 
Figure 5. The matched points of an image pair from dataset 1 in 

Agisoft’s Photoscan software. 
 
As demonstrated in Figure 5, even the total matches are too 
many and it is not clear immediately, whether the corrected 
orig. image pair has more valid matches than the uncorrected 
one. This is also observed in most of the cases of Table 1. 

Regarding SIFT and SURF results, two image pairs with their 
matches are presented in Figure 6 and Figure 7. In both figures, 
the left column contains SIFT results while the right column, 
SURF results. The first row contains the uncorrected image 
pairs, the second one the corrected ct image pairs and the third 
one the corrected orig. image pairs of the caustics free images. 
During the performed tests, it was decided not to evaluate the 
number of the total and valid matches only, but also evaluate the 

geometry of the matches, since some valid results of the 
RANSAC filtering are still matching the wrong points. Taking 
into account the above, one can observe in Figures 6  and 7 that 
the image pairs of the uncorrected imagery have a lot of 
intersecting matches, a phenomenon that is eliminated in the 
image pairs of the caustics free imagery (corrected ct image and 
corrected orig. image). This happens to all the tested datasets, 
however, for matter of space in this paper only the results of the 

dataset 1 and dataset 3 are presented.  However, the matching 
results of all the datasets are presented in Table 1. 



 

 

 
 

 

 
 

 

  
 

Figure 6. SIFT (left) and SURF (right) matched points on the original uncorrected imagery (first row), the corrected  ct imagery 
(second row) and the  corrected  orig. imagery (third row) of the dataset 1. 

 

 
 

 

 
 

 

 
 

 

Figure 7. SIFT (left) and SURF (right) matched points on the original uncorrected imagery (first row), the corrected  ct imagery 
(second row) and the  corrected  orig. imagery (third row) of the dataset 3. 

 

 



 

  Photoscan SIFT SURF 

 Total Valid Total Valid Total Valid 

Dataset 1 

Uncorrected images 1345 1303 4041 66 1923 40 

Corrected ct images 1410 1379 3508 57 866 26 

Corrected orig. images 1423 1399 3951 66 1505 45 

Dataset 2 

Uncorrected images 741 736 3266 57 1695 41 

Corrected ct images 599 587 2268 41 471 21 

Corrected orig. images 597 588 3136 51 1157 28 

Dataset 3 

Uncorrected images 1164 1120 4129 61 1611 39 

Corrected ct images 1206 1168 2352 44 164 14 

Corrected orig. images 1244 1214 3676 62 810 28 

Dataset 4 

Uncorrected images 1498 1428 3691 57 1741 36 

Corrected ct images 1476 1301 3606 60 1394 34 

Corrected orig. images 1473 1437 3567 60 1533 36 

Dataset 5 

Uncorrected images 432 412 1067 37 645 31 

Corrected ct images 277 271 1059 39 245 22 

Corrected orig. images 306 296 1141 43 544 31 

Table 1. The results of the matching process for all the datasets 

 
There, in the 66% of the cases, the corrected orig. images are 
having more matches than the uncorrected images. However, 
even in the cases where the original imagery has more matches, 

these matches are wrong, compared with the respective ones on 
the caustics free images. The above results, suggest that the 
caustics effect, indeed affects the matching process in most of 
the cases. In the SIFT and SURF tests, results suggest that the 
caustic free images will facilitate a better image matching 
performance and thus better and more accurate 3D 
reconstruction. 
 

4.3 3D reconstruction 

SfM-MVS Processing: Subsequently, all datasets were 
processed using SfM MVS with Agisoft’s Photoscan 
commercial software. To this end, 5 different three-dimensional 

(3D) projects were created for each dataset and image dataset. 
At each site/project, 3 different blocks were created: (i) one 
with the uncorrected imagery, (ii) one with the corrected ct 
imagery and (iii) one with the corrected orig. imagery. All three 
channels of the images were used for these processes. For the 
created projects of each test site, the alignment parameters of 
the original (uncorrected) dataset were adopted to all other 
datasets. This ensured that the alignment parameters will not 

affect the 3D reconstruction and only the effect of the caustics 
on this specific process will be evaluated. Subsequently, 3D 
dense point clouds of medium quality and density were created 
for each data set.  No filtering during this process was 
performed in order to get the total number of dense point 
clouds, as well as the noise. It should be noted that medium 
quality dense point cloud means that the initial images’ 
resolution was reduced by a factor of 4 (2 times for each side), 
in order to be processed by the SfM-MVS software. The 

resulting point clouds were evaluated in terms of total number 
of points and roughness, a metric that indicates also the noise on 
the point cloud. 
 
Total number of points: Here all the 3D points of the cloud 
were measured in order to get the total number, including any 
outliers and noise (Girardeau-Montaut, 2018). 
 

Roughness: For each point, the roughness value is equal to the 
distance between this point and the best fitting plane computed 
based on its nearest neighbours (Girardeau-Montaut, 2018). 
 
 
 

 
The performed experiments, suggest that the caustics removal 
and hence the processing of the imagery do not affect the 
generated point cloud in a negative way but they rather improve 

point cloud quality by slightly reducing its roughness and 
slightly increases the generated points by 2-3%, as it is also 
demonstrated in Figure 8 and Figure 9. 

 
Figure 8. The total number of points of each dataset for the 3 

processing stages.

 
Figure 9. The mean roughness of the point cloud of each dataset 

for the 3 processing stages. 
 
It is considered important that the unfiltered point clouds of the 
corrected imagery, having more points, have also less noise, as 
it is illustrated in Figure 10. 
 

 
(a) 



 

 
(b) 

 
(c) 

Figure 10. The unfiltered point clouds of the dataset 1. (a) the 
resulted point cloud using the uncorrected images, (b) the 

resulted point cloud using the corrected ct images and (c) the 
produced point cloud using the corrected orig. images. 

 
5. CONCLUDING REMARKS 

The implemented novel approach has been extensively tested on 
five real datasets of a shallow underwater site containing 

caustics. Test and evaluation indicate that caustics affect the key 
point detection and matching processes as well as 3D 
reconstruction and their removal is legitimate.  
 
Results suggest that the implemented novel approach for 
caustics removal performs quite well in intense caustics, like the 
ones that are present in the dataset. As can be seen from the 
results, even with these relatively small networks and small 

synthetic training dataset we were able to transfer the learning 
to real world data quite effectively. As it is observed, in 66% of 
the cases, the total number of matches is increasing when the 
images are processed by the algorithm while in almost all of the 
cases the matches on the corrected orig. imagery are more 
reliable, even this is not the case for the corrected ct imagery. 
Most important is that the more successful the caustics removal 
is, the more valid matches are appearing in the stereo pair. Since 

the caustics have been successfully removed, further processing 
with structure-from-motion and multi-view stereo techniques 
becomes possible for a number of applications including 
underwater archaeology. 
 

ACKNOWLEDGEMENTS 

The contribution of P. Agrafiotis and D. Skarlatos is part of the 
i-MareCulture project (Advanced VR, iMmersive Serious 
Games and Augmented REality as Tools to Raise Awareness 
and Access to European Underwater CULTURal heritagE, 
Digital Heritage) that has received funding from the European 
Union’s Horizon 2020 research and innovation programme 
under grant agreement No 727153. The design and development 

of the CNN networks is based upon work supported by the 
Natural Sciences and Engineering Research Council of Canada 
Grants No. N01670 (Discovery Grant). Authors would like to 
thank also the MSc student Alexandra Papadaki for her valuable 
contribution in key point matching and filtering. 

 
REFERENCES 

Bay, H., Tuytelaars, T., & Van Gool, L., 2006. Surf: Speeded 
up robust features. Computer vision–ECCV 2006, 404-417. 

Bowens, A. ed., 2011. Underwater archaeology: the NAS guide 
to principles and practice. John Wiley & Sons   

Fattal, R., 2008. Single image dehazing. ACM transactions on 
graphics (TOG), 27(3), 72. 

Fischler, M. A., & Bolles, R. C., 1987. Random sample 
consensus: a paradigm for model fitting with applications to 

image analysis and automated cartography. In Readings in 
computer vision (pp. 726-740). 

Forbes, T., Goldsmith, M.,Mudur, S., Poullis, C., 2018, 
DeepCaustics: Classification and Removal of Caustics from 

Underwater Imagery, IEEE Journal of Oceanic Engineering 
(Under press) 

Georgopoulos, A. and Agrafiotis, P,. "Documentation of a 

submerged monument using improved two media techniques," 
2012. 18th International Conference on Virtual Systems and 
Multimedia, Milan, 2012, pp. 173-180. doi: 
10.1109/VSMM.2012.6365922 

Girardeau-Montaut, D.. 2018. Cloud compare - 3d point cloud 
and mesh processing software. Open Source Project. 

Gracias, N., & Santos-Victor, J., 2000. Underwater video 
mosaics as visual navigation maps. Computer Vision and Image 
Understanding, 79(1), 66-91. 

Gracias, N., Negahdaripour, S., Neumann, L., Prados, R., & 
Garcia, R., 2008. A motion compensated filtering approach to 
remove sunlight flicker in shallow water images. In OCEANS 
2008 (pp. 1-7). IEEE. 

He, K., Sun, J., & Tang, X., 2011. Single image haze removal 
using dark channel prior. IEEE transactions on pattern analysis 
and machine intelligence, 33(12), 2341-2353. 

Joshi, N., & Cohen, M. F., 2010. Seeing Mt. Rainier: Lucky 
imaging for multi-image denoising, sharpening, and haze 
removal. In Computational Photography (ICCP), 2010 IEEE 
International Conference on (pp. 1-8). IEEE. 

Lowe, D. G., 1999. Object recognition from local scale-
invariant features. In Computer vision, 1999. The proceedings 
of the seventh IEEE international conference on (Vol. 2, pp. 
1150-1157). IΕΕΕ 

Menna, F., Nocerino, E., Troisi, S., Remondino, F., 2013: A 
photogrammetric approach to survey floating and semi-
submerged objects. Proc. of Videometrics, Range Imaging and 

Applications XII, SPIE Optical Metrology, Vol. 8791, doi: 
10.1117/12.2020464 

Schechner, Y. Y., & Karpel, N., 2004. Attenuating natural 

flicker patterns. In OCEANS'04. MTTS/IEEE TECHNO-
OCEAN'04 (Vol. 3, pp. 1262-1268). IEEE. 

Seinturier, J., Drap, P., Durand, A., Vincent, N., Cibecchini, F., 

Papini, O. and Grussenmeyer, P., 2004. Orthophoto imaging 
and GIS for seabed visualization and underwater archaeology. 
In XXXII CAA (pp. 1-6).  

Shihavuddin, A. S. M., Gracias, N., & Garcia, R., 2012. Online 
Sunflicker Removal using Dynamic Texture Prediction. In 
VISAPP (1) (pp. 161-167). 

Snavely, N., Seitz, S. M., & Szeliski, R., 2008. Modeling the 
world from internet photo collections. International journal of 
computer vision, 80(2), 189-210. 

Trabes, Emanuel, and Mario A. Jordan., 2015. "Self-tuning of a 
sunlight-deflickering filter for moving scenes underwater." 
Information Processing and Control (RPIC), 2015 XVI 
Workshop on. IEEE, 2015. 


