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Abstract. In this paper we present a complete pipeline for extracting
road network vector data from satellite RGB orthophotos of urban ar-
eas. Firstly, a network based on the SegNeXt architecture with a novel
loss function is employed for the semantic segmentation of the roads. Re-
sults show that the proposed network produces on average better results
than other state-of-the-art semantic segmentation techniques. Secondly,
we propose a fast post-processing technique for vectorizing the raster-
ized segmentation result, removing erroneous lines, and refining the road
network. The result is a set of vectors representing the road network.
We have extensively tested the proposed pipeline and provide quantita-
tive and qualitative comparisons with other state-of-the-art based on a
number of known metrics.

Keywords: road network extraction · residual neural networks · seman-
tic segmentation

1 Introduction

The automatic extraction of road networks from remote sensor imagery has long
been a challenge not just to the GIS but also the computer vision communi-
ties. The vast variations in the road functions [e.g. rural, urban, highways, etc],
colors [e.g. dirt road, asphalt] , shapes [e.g. winding mountain roads, straight
highways], and sizes, make it an extremely challenging task. Recent attempts
using deep learning techniques have shown promising results [14], [12], the ma-
jority of which reformulate the problem as a pixel classification problem and
employ semantic segmentation techniques. Although this is useful in some cases,
the majority of the applications employing road network data, e.g autonomous
driving, GIS, etc, require that the network is in vector form; and in fact, it is
this vectorization or linearization of the road network pixels that is perhaps one
of the most challenging tasks.

In this paper we present a novel approach for extracting road networks in
vector form. A deep convolutional neural network based on the SegNeXt ar-
chitecture is trained to classify road pixels in satellite images of urban areas.
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This architecture offers a reduced number of parameters and high localization
accuracy therefore eliminating the need for the typical refinement of the segmen-
tation results using MRF-based techniques. Furthermore, a novel loss function is
proposed which provides better results than the typical loss functions used. The
segmentation result is then vectorized and refined using a fast post-processing
technique. During the post-processing, linear road segments are extracted using
an iterative patch-based Hough transform technique which tracks the segments
from one patch to the other. Next, a refinement process ensures that the nearby
linear road segments are connected together to form a larger road network, and
conflicting/overlapping parallel segments and other small segments are removed.
The final result of the proposed technique is a road network in vector form which
can be readily used in any GIS-based application.

Paper Organization. The paper is organized as follows: Section 2 provides
a brief overview of the state-of-the-art in the area. In Section 3 we present
an overview of the system. The network architecture is presented in detail in
Section 4 including the training and validation tests. Section 4.4 explains the
post-processing refinement process which converts the classified road pixels into
the final road network vectors. Finally, Section 5 shows the comparisons of the
proposed pipeline and the current state-of-the-art, and Section 6 presents the
conclusion and future work.

Fig. 1: System overview. The input RGB image is processed using SegNeXt and
results in a grayscale classification image of road and non-road pixels. The clas-
sification image is then divided into patches which are further processed. The
refinement process involves an iterative application of patch-based Hough trans-
forms which results in a set of extracted lines. Erroneously extracted lines result-
ing from misclassification are removed, and nearby lines are either connected (if
not parallel) or suppressed (if parallel). The result is a set of vectors represent-
ing the road network in the input image shown in yellow overlaid on the input
image.

2 Related Work

Below we provide a brief overview of the state-of-the-art in the area.
For many years the majority of the road extraction techniques relied solely on

procedural approaches[6][1][7]. Of the most recent, is the work in [8] where the
authors propose a technique for extracting the urban roads from satellite images
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by using orientation histograms and morphological profile features to guide a
binary partition tree, thus achieving a higher accuracy.

Perhaps one of the first works on training deep neural networks for extracting
large-scale road networks from satellite images is the work presented in [11]. The
authors present a network trained on a challenging dataset with large context
(i.e. larger sized patches containing a large number of urban features) in order
to better differentiate between what is a road vs a non-road pixel.

Recently, more studies are following the semantic segmentation approach[4],
[18], [15], [9]. The authors in [3] propose a fully convolutional network based on
the U-Net family architecture with pre-trained ResNet-34 as the encoder. They
optimize a loss function which combines the binary cross entropy and the inter-
section over union. During the test phase they report that data augmentation
helps improve the prediction results even further.

In [17] the authors present a network which combines the ResNet and U-Net
architectures to address the road network extraction. Their network employs skip
connections within the residual units and between the encoding and decoding
paths of the network to facilitate propagation of information, and also reduce
the number of the generic U-Net’s parameters by 75%.

The authors in [10] propose a semantic segmentation technique based on the
ResNet architecture consisting of an encoder that compresses the image into a
small feature map, and a fully convolutional decoder for generating the segmen-
tation output. They also propose a post-processing technique for refining the
segmentation result. Their approach relies on heuristics to connect and refine
the roads (i.e. gap distances, accumulated error resulting from the first net-
work’s classification) which in some cases makes it hard to get complete and
well optimized road networks.

At the time of writing this manuscript the best performing road network
extraction technique is RoadTracer presented in [2]. The authors follow a new
paradigm in which a CNN is used as a decision tool for tracing the road network
in the image instead of using the neural network for semantic segmentation. Their
approach has the pre-condition that the starting point lies on a road otherwise
the tracing fails. Problems also arise in cases where tracing the road network
runs out of points to process e.g. happens often when a bridge is reached. In
this case, the result will be partial and disjoint from the entire road network and
hard to recover the missing parts.

3 System Overview
The input to our system is an RGB image which is fed forward into a deep
autoencoder network (SegNeXt) with aggregated residual transformations. The
network outputs a semantic segmentation of the image in the form of a grayscale
image in which each pixel is classified into a road or non-road classes. The clas-
sification image is then divided into patches which are further processed. During
the refinement process, an iterative patch-based Hough transform is applied.
Extracted lines are tracked from one patch to the other. Erroneously extracted
lines resulting from misclassification are removed, and nearby lines are either
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connected (if not parallel) or suppressed (if parallel). The result is a set of vec-
tors representing the road network in the input image. Figure 1 summarizes the
system overview.

Fig. 2: Refinement process. Three cases are considered. A: no overlap between
two windows, move the two nearby end points to the average location to connect
these two line segments; B: 50% overlapping between windows, in addition to
merging nearby end points of line segments, the merging of nearby points-to-lines
is also needed; C: extract a curve by merging nearby lines. Smaller windows size
and larger overlapping area will yield smoother result.

4 Network Architecture

The network architecture resembles that of a SegNeXt network [5] but with
grayscale output and is shown in Figure 3. The network consists of three deep
convolutional encoders and corresponding number of decoders with feed-forward
links and cardinality-enabled residual-based building blocks. In each residual
block the input data is split into multiple groups onto which different kernels
are applied. A dilation of 2 is applied during convolution to introduce more spa-
tial context. The feed-forward links from the encoders to the decoders help to
retain high frequency information and improve the boundary delineation result-
ing in a smoother segmentation result therefore eliminating the need for any
subsequent post-processing with conditional random fields (CRF), etc. In [16]
these cardinality-enabled residual-based blocks used in shallow networks were
shown to surpass in terms of performance other deeper CNNs. Thus, using these
blocks the network can be shallower resulting in a smaller number of trainable
network parameters therefore making the training process more effective.
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Fig. 3: SegNeXt-variant architecture

4.1 Dataset

For the training, validation and testing of the network we follow a similar ap-
proach as in [10]. A large number of satellite images acquired from Google Maps
with resolution of 4096× 4096 and ground sampling density of 60 cm

pixel are used.

These images are randomly selected in the 24km2 surrounding area of the GPS
locations of 40 major cities. Training and validation is performed using images
of 25 of these cities, and testing is performed on the images of the remaining
15 cities. Thus, there are no images of the same city between the training and
testing datasets. The ground truth data is road center line extracted from the
OpenStreetMap[13], width of road lines in ground truth images is 10 pixels.

4.2 Training

The network was trained on the images of the 25 cities. In order to maximize the
training dataset we decided not to use a validation set during training but rather
calculate the loss based after each epoch on three randomly selected patches from
the training set. The training took 48 hours on a single NVIDIA GTX 1080Ti
with an adaptive learning rate. We have used Keras API (with Tensorflow as
backend engine) for the development of the network and the code will be made
available as open source.

Input. The input to the network is a batch of 32 patches of size 200 ×
200. Patches are selected using random sampling in order to ensure appropriate
coverage.

Data augmentation. We apply a series of different data augmentation op-
erations on the input patches. A histogram equalization is first applied to all
patches in order to reduce possible high contrast resulting from the sun which
appears as deep black shadows. Next, a number of transformations is performed
consisting of random rotations in the range of [0, π2 ] degrees, scaling up/down
by up to 70%, and random flipping on the vertical/horizontal axis.

Loss function. Perhaps the most widely used loss functions when dealing
with a classification problem are the (a) Mean square error(MSE), and (b) In-
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tersection over Union(IoU). However, due to the characteristics of MSE (takes
the sum of a patch but ignores the positional relationships), it tends to result
in a lot of noise in the segmentation output, and often yields bad performance.
On the other hand, the use of an IoU loss function results in many gaps in the
results as it was also recently reported in [2]. To address the aforementioned
limitations, we propose a new loss function which comprises of both MSE and
the inverse of IoU, and combines them as follows,

L = MSE × union

intersection
(1)

Intuitively, the MSE is good at indicating whether a pixel is road or non-road,
and the inverse of the IoU helps to reduce the noise.

4.3 Testing

During testing, we run the network on the image with a sliding window, with
a window size of 200 × 200 and a step size of 100. Instead of thresholding the
semantic segmentation result similar to many other semantic segmentation tech-
niques, we remove the noise and extract roads by applying Hough transform to
extract line segments in each window based on the network predictions. Since
we have overlaps between the sliding windows, extracted line segments may not
agree in different windows. Thus, a few more steps are needed to refine the result
and get a clean road network.

4.4 Post-processing Refinement

Figure 2 shows all possible cases handled by our refinement process and what
the resulting line segments will be. For a simple case, if there’s no overlap be-
tween two windows (patches), extracted Hough lines will be like case A with no
crossing over or overlap on one another. In this case, we merge all nearby line
end points by moving them to their average location. Next, we consider the case
of overlapping patches similar to case B in the Figure 2. If the extracted Hough
lines on two patches do not ”agree” with each other, intersection or misalign-
ment will occur. To address the misalignment issue, we perform the following
steps:

1. Merge all nearby line end points similar to case A;
2. For each line end point, search around itself for nearby lines, if there is a

line ab passing by this end point, merge this end point into the line in the
following steps:
– break the line ab;
– find the middle point p between the end point and the line;
– move the end point to p;
– connect the two end points a and b with point p, forming two new lines

ap and pb
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Comparison between the proposed technique (a, b, c), DeepRoadMap-
per [10] (d, e, f), and RoadTracer [2] (g, h, i) for the cities of Pittsburgh (left
column), San Diego (middle column), and Kansas City (right column). Green:
true positives. Red: false positives. Blue: false negatives. Ground truth: Open-
StreetMap [13]. The full resolution comparison results for all 15 cities and the
source code can be downloaded from http://theictlab.org/lp/2019Re_X/

This procedure is repeated on all line end points in the image which results
in all misaligned lines being removed. An advantage of this procedure is that
Hough transform cannot extract curved roads from the network prediction but by
extracting short line segments on each patch a curved road can be approximated
as a set of piece-wise linear segments connected to each other. By merging nearby
points-to-points (e.g. case A) and points-to-lines (e.g. case B), we can reconstruct
a curved road or a circle with Hough lines (e.g. case C).

http://theictlab.org/lp/2019Re_X/
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Iteratively looking through the entire image space could be a time consuming
process, but since we are using sliding window technique during testing, only
neighbours of current patch are in the searching range to merge nearby points and
connect line segments. Meanwhile, in most cases, only one or two line segments
will be found on road patches. Thus, this searching and merging progress is
actually very fast.

Table 1: F1 Score, IoU and Junction metrics on 15 test cities. [2] RT: RoadTracer,
[10] DRM: DeepRoadMapper (implementation provided in [2])

Ours [2] RT [10] DRM

City F1 IoU Junction F1 IoU Junction F1 IoU Junction

Amsterdam 0.28 0.16 0.16 0.01 0.01 0.01 0.22 0.13 0.04

Boston 0.71 0.55 0.58 0.67 0.51 0.74 0.77 0.62 0.66

Chicago 0.58 0.41 0.41 0.69 0.52 0.77 0.68 0.51 0.51

Denver 0.71 0.56 0.57 0.69 0.53 0.73 0.46 0.30 0.35

Kansas City 0.82 0.69 0.70 0.76 0.61 0.82 0.85 0.74 0.76

Los Angeles 0.68 0.51 0.51 0.73 0.57 0.79 0.73 0.58 0.61

Montreal 0.73 0.57 0.55 0.78 0.63 0.80 0.69 0.53 0.56

New York 0.51 0.34 0.35 0.73 0.57 0.84 0.42 0.26 0.29

Paris 0.59 0.42 0.26 0.67 0.51 0.71 0.41 0.26 0.31

Pittsburgh 0.71 0.55 0.57 0.41 0.26 0.48 0.69 0.58 0.57

Salt Lake City 0.75 0.60 0.65 0.73 0.58 0.79 0.58 0.41 0.47

San Diego 0.72 0.56 0.62 0.66 0.49 0.77 0.79 0.65 0.72

Tokyo 0.38 0.24 0.11 0.56 0.39 0.60 0.42 0.27 0.34

Toronto 0.69 0.53 0.48 0.76 0.61 0.74 0.79 0.65 0.69

Vancouver 0.41 0.26 0.25 0.65 0.49 0.70 0.45 0.29 0.29

Average 0.63 0.47 0.45 0.63 0.49 0.69 0.60 0.45 0.48

5 Evaluation

As of writing this manuscript the state-of-the-art in the area is considered to
be the work presented in [2]. The authors have shown that they outperform all
previously top performers in road extraction. Hence, we use the custom junction
metric proposed by them in [2] and the well-known Intersection over Union
(IoU) metric to evaluate our work and compare our results. The junction metric
involves measuring the precision and recall based on the detected junctions in
the inferred map. Furthermore, we report on additional metrics typically used
in road extraction such as completeness, correctness, precision, recall, and F1
score.

Table 1 shows the comparison between the proposed approach and the two
state-of-the-art RoadTracer [2] and DeepRoadMapper [10]. The F1 Score and
IoU metrics shown are for the 15 test cities. As it can be seen, our method
outperforms the DeepRoadMapper on the overall test set in both F1 score and
IoU metrics. Our technique also surpasses the RoadTracer in accuracy on at
least half of the cities. We attribute this to the fact that our approach initially
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results in a very high number of classified roads which the refinement process
then prunes down leading to a lower error rate than the other techniques.

In terms of the junction metric, the results show that both semantic segmen-
tation methods (ours and DeepRoadMapper) have the same level of performance
in detecting the junctions, whereas the RoadTracer performs better because it
seldom misclassifies road pixels around junctions.

As shown in the results shown in Figure 4, the road network resulting from
our proposed method has relatively high completeness factor, and higher conti-
nuity than the results of DeepRoadMapper for the same areas. The images of
some of the cities in the test dataset such as Tokyo and Amsterdam exhibit con-
siderably different characteristics when compared to the images of other cities
in the training set. As shown in Figure 5, the building density in Tokyo is much
higher than other cities and the roads are narrower, therefore tall buildings pro-
duce shadows which occlude large parts of the roads. Amsterdam on the other
hand has a different color temperature (tone). Both of these examples are sel-
dom seen in the dataset during the training process, hence their presence in the
testing dataset results in a higher misclassification rate. This is also evident from
the reported metrics shown in Table 1.

Table 2: F1 score, IoU on 15 test cities with and without post-processing.
[10] DRM: DeepRoadMapper (implementation provided in [2]). DRM (w/ PP):
DeepRoadMapper, but replace its own post-processing with our post-processing.
w/ PP: with our post-processing. w/o PP: without our post-processing

Ours (w/ PP) Ours (w/o PP) DRM [10] DRM (w/ PP)

City F1 IoU F1 IoU F1 IoU F1 IoU

Amsterdam 0.28 0.16 0.26 0.15 0.22 0.13 0.21 0.12

Boston 0.71 0.55 0.62 0.45 0.77 0.62 0.80 0.67

Chicago 0.58 0.41 0.44 0.29 0.68 0.51 0.74 0.58

Denver 0.71 0.56 0.64 0.47 0.46 0.30 0.55 0.38

Kansas City 0.82 0.69 0.78 0.64 0.85 0.74 0.88 0.79

Los Angeles 0.68 0.51 0.57 0.39 0.73 0.58 0.77 0.63

Montreal 0.73 0.57 0.69 0.52 0.69 0.53 0.74 0.59

New York 0.51 0.34 0.41 0.26 0.42 0.26 0.42 0.27

Paris 0.59 0.42 0.30 0.18 0.41 0.26 0.42 0.27

Pittsburgh 0.71 0.55 0.59 0.42 0.69 0.58 0.75 0.60

Salt Lake City 0.75 0.60 0.72 0.56 0.58 0.41 0.64 0.47

San Diego 0.72 0.56 0.64 0.47 0.79 0.65 0.83 0.71

Tokyo 0.38 0.24 0.08 0.04 0.42 0.27 0.42 0.26

Toronto 0.69 0.53 0.67 0.51 0.78 0.65 0.83 0.71

Vancouver 0.41 0.26 0.35 0.21 0.45 0.29 0.47 0.31

Average 0.63 0.47 0.52 0.37 0.60 0.45 0.63 0.49

Table 2 shows the effect on the performance of the proposed post-processing
method. A set of experiments were conducted to determine how the iterative
Hough transform post-processing affects the accuracy and completeness of the
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(a)

(b)

Fig. 5: Cities exhibiting different characteristics i.e. patterns, building densities,
building heights, etc. The most commonly occurring city pattern/density in the
training dataset looks like Boston (a)-right and Chicago (b)-right. Unique cases
appearing in the test dataset none similar to which were seen by our network
during training such as Tokyo (a)-left and Amsterdam (b)-left. Tokyo (a)-left
is shown at the same zoom-level as Boston (a)-right; has much higher road
and building density, roads are narrower, tall buildings produce shadows which
occlude large parts of the roads. Amsterdam (b)-left is shown at the same zoom-
level as Chicago (b)-right. The majority of the images used in training have
similar color temperature (tone) as Boston and Chicago; in contrast Amsterdam
has more green and gray areas.

extracted road network. First, we applied our pipeline on the aforementioned 15
cities with- and without- the proposed post-processing. Furthermore, we applied
our post-processing method on the results of DeepRoadMapper by replacing its
own post-processing steps. As it can be seen from the reported metrics the pro-
posed post-processing method has a significant and positive effect on the evalua-
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tion results. Specifically using our network, in Tokyo where the network performs
the worst the F1 score increased by 30% and IoU increased by 19% when using
our post-processing method, while the overall F1 score increased by 10%, and
IoU increased by 9%. For DeepRoadMapper, the average performance improved
by 4% on both F1 score and IoU after substituting their post-processing method
with ours. It should be noted that DeepRoadMapper uses a post-processing
method which relies on training yet another deep neural network to recover the
missing segments and connect the gaps in the raw segmentation result. The au-
thors indicate that the training of this second network takes at least a day to
reach a good performance score. Thus, our iterative Hough transform method is
not only improving the overall performance, but also takes less time to perform
the task. All measurements shown in Table 2 are based on the F1 score and IoU
metrics.

6 Conclusion

We presented a novel approach for road extraction. Uniquely, the proposed ap-
proach leverages cardinality-enabled neural networks with feed forward links in
order to achieve high accuracy in the semantic segmentation. The classification
result is then further processed using a novel post-processing refinement process
which iteratively applies a Hough-transform on a per-patch basis which results
in a set of linear segments. The segmented are further refined by connecting
nearby segments together and removing erroneous segments resulting from mis-
classification. We compared our approach with state-of-the-art techniques and
we have shown that it can produce on average comparable results and in some
cases better. We also compared the post-processing techniques and showed our
proposed iterative Hough-transform post-processing method brings significant
improvements for semantic segmentation results.
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