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Abstract. Obtaining training data for machine learning models can be challenging. Capturing or
gathering the data, followed by its manual labelling, is an expensive and time-consuming process.
In cases where there are no publicly accessible datasets, this can significantly hinder progress. In
this paper, we analyze the similarity between synthetic and real data. While focusing on an object
tracking task, we investigate the quantitative improvement influenced by the concentration of the
synthetic data and the variation in the distribution of training samples induced by it. Through
examination of three well-known benchmarks, we reveal guidelines that lead to performance
gain. We quantify the minimum variation required and demonstrate its efficacy on prominent
object-tracking neural network architecture.
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1 Introduction
The process of data collecting is not without challenges, requiring substantial investments of time and
resources to obtain labelled samples of high quality. Given the resource and capital costs associated
with data acquisition, it is more pragmatic and cost-effective to utilize publicly available datasets
that have already been published. In practice, however, straightforward application of such datasets
may not always be feasible or effective due to a variety of potential challenges or constraints such as
biases. One potential solution to these challenges is utilizing synthetic data as a supplement to real-
world datasets. By supplementing real-world data with synthetic data, researchers can overcome the
limitations inherent to traditional data sources [1, 2], thereby enhancing the overall quality and utility
of their datasets.

The utilization of synthetic data has been extensively documented in recent literature, as evidenced
by multiple works [33, 38, 30]. However, much of this prior research has focused on domain adaptation
techniques which is adding another computationally expensive step to an already resource-hungry deep
learning task. This paper examines the impact of the direct use of synthetic data on the performance
of machine learning models. In a preliminary step, we analyze the Frechet Inception Distance (FID)
[12] between the synthetic and the real sequences for three benchmark datasets. Building upon the
patterns observed, we form clusters for both low and high

The approach we propose is both simple and straightforward, involving the direct utilization of
synthetic data without the need for additional domain adaptation steps during training. We justify
this approach by viewing the domain adaptation step as a potentially costly and extra procedure when
dealing with an already challenging task.

Our proposed strategy aligns with prior studies that have incorporated synthetic data into their
training procedures without domain adaptation. However, our approach differs significantly from those
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Fig. 1: A combination of synthetic and real datasets with more
synthetic samples and higher variance in distribution (top)
outperforming another combination with a lower number of
synthetic samples and lower variance in distribution (bottom).

level features which makes us inquisitive
about the impact of these clusters on the
performance of the models, if affected
then by how much and why? Next, we
examine the impact of different concen-
trations of photo-realistic sequences on
training for the three benchmarks and
two rendered datasets one of which is
generated by us using a game engine.
We demonstrate that the use of synthetic
images during training can positively af-
fect performance. Also, we discuss in-
stances where the clusters from our pre-
liminary analysis provide an additional
stimulus in the form of a gain or drop in
performance. We quantify the variation
and provide design guidelines for creating
synthetic datasets used to train object-
tracking models.

studies. For instance, the Virtual KITTI dataset [9] involves a two-step process where pre-training
is performed on the virtual data followed by fine-tuning on real data. The MOTSynth challenge [8]
encourages training on synthetic data only and testing on real data, without any use of the latter during
the training phase. In contrast, our approach involves fine-tuning models on an amalgamation of both
actual and synthetic data, thereby improving tracking performance. To the best of our knowledge, this
technique has not been previously explored in the literature.

In this paper, we present the following contributions:
– We investigate the efficacy of integrating synthetic data with real data for improving the performance

of Multiple Object Tracking.
– We conduct a comprehensive analysis of our experimental results and offer insights on the synergistic

effects of using synthetic and real data. Drawing from our observations, we formulate a set of
general recommendations for the generation and incorporation of synthetic data to enhance model
performance.

In the following sections, we conduct a literature review of previous works involving synthetic data
and Multiple Object Tracking, followed by an analysis of the similarity between real and synthetic
data, our experimentation on different datasets and finally a discussion of the results and conclusions
drawn from it.
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2 Related Works
This section delves into the various methodologies employed by researchers to generate synthetic data
for computer vision tasks. The discussion highlights the value of synthetic data in improving deep
learning models’ performance through techniques such as domain adaptation and pre-training. Ad-
ditionally, we examine the different tracking techniques that incorporate various concepts, including
behavioural models, graph models, convolutional architectures, and transformers, to achieve robust
and accurate tracking performance.
2.1 Synthetic Data
To study the impact of synthetic data, the creation of the dataset is important. [13], [24], [25], [33]
use RAGE for generating their corresponding virtual datasets. Detouring [6] was employed in [24]
to create synthetic a benchmark from commercial software and evaluate visual perception tasks. In
[3] a dataset of virtual human subjects under different illumination conditions was developed using
Unreal Engine. In [27], Unity Engine was used to develop a dataset for semantic segmentation. Some
of the known publically available virtual datasets include Synthia[27] a collection of synthetic images
in an urban environment of a virtual city, MOTSynth [8] a large open-source synthetic dataset for
pedestrian detection and tracking, Virtual KITTI dataset[9] a synthetic adaptation of popular KITTI
Vision benchmark [10].

Various studies demonstrate the efficacy of using synthetic data for enhancing the performance of
deep learning models in various computer vision tasks. In [13] utilized only synthetic images to train
their model, which outperformed the model trained on actual images in object classification. Wang
et al.[33] simulated a crowd in their GCC dataset and proposed the SSIM Embedding cycle GAN
for counting crowds in the wild. Sindagi et al.[30] demonstrated that their Gaussian Process-based
framework, which was trained on synthetic data, outperformed other domain adaptation techniques
that relied only on real data. H. Zunair and A. Hamza [38], utilized domain adaptation to generate
synthetic chest X-ray scans and showed that when used as supplementary data during training, the
performance of convolutional architectures for classification improved. In [3] a synthetic dataset was
used along domain adaptation to improve the performance of a person re-identification task.
2.2 Multiple Object Tracking
L. Taixé et al. introduced a tracker that uses social and grouping behaviours inside a graph model
formulating the tracking as a minimum cost flow optimization problem[14]. H. Nam and B. Han
proposed MDNet[20] a multi-domain learning convolutional neural network framework that learns
domain-independent features during pretraining and domain-specific information during the tracking.

L. Bertinetto[5] trained a fully convolutional Siamese network to learn a similarity function in an
offline manner to be evaluated online during training to locate a template image within the search image
using the strong embeddings learned in the offline phase. B. Li[15] proposed a Siamese Region Proposal
Network consisting of a template and a detection branch which are trained offline and correlational
maps for feature extraction, the tracking is formulated as a local one-shot detection task.

P. Bergman and T. Meinhardt introduced tracktor[4] that exploits bounding box regression of an
existing object detector, without any additional training required for tracking objects. Zhou presented
a point-based tracking framework called CenterTrack[35] that uses CenterNet[36] detector conditioned
on two consecutive frames that also predicts a displacement vector for associating positions of the
objects through frames.

Y.Zhang et al. introduced FairMOT[34], also a CenterNet[36] based technique for a multi-task
learning approach for detection and re-identification. In this technique, the competition for accuracy
between the two tasks was addressed by introducing fairness. This results in an unbiassed network
which treats both tasks equally thus, it doesn’t affect their accuracy adversely.
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G. Ning et. al proposed ROLO[21] a recurrent extension of YOLO[22] architecture by adding
an LSTM stage, training involves three phases pertaining of convolutional layers, training of object
proposal module and training of recurrent LSTM module.

P. Sun et al. introduced TransTrack[31] an attention-based query-key scheme inspired by transform-
ers[32] that uses attention to track objects, their framework generates two sets of queries containing
information for new coming objects and information for maintaining tracklets. T. Meinhardt et al.
introduced Trackformer[18] following the tracking by attention paradigm for joint detection and track-
ing, attention is computed between frame features, tracks and object queries to output bounding boxes
and identities.
3 Synthetic Dataset & Observations
In this section we touch upon the synthetic dataset that we created and a publically available synthetic
dataset for supplementing the real dataset. We also discuss our key observations when comparing these
synthetic datasets to real video sequences using Fréchet Inception Distance (FID) [12].

Our experimental setup utilizes synthetic video sequences generated with the AirSim plugin [29]
for Unreal engine. Details on the generation of the dataset are discussed in Section 4.1. Along with this
new dataset, we use two published Unmanned Aerial Vehicle (UAV) benchmarks for the detection and
tracking of vehicles, UAVDT benchmark [7] and VisDrone dataset [37] as real sequences. To eliminate
bias due to the domain and task, and ensure the generalization of the insights, we additionally use
another pair of real and synthetic tracking datasets with people tracking in place of vehicle tracking as
the objective. For this purpose, we use MOT17 [19] and MOTSynth [8] as real and synthetic datasets
respectively.

Fréchet Inception Distance (FID) is a quality measure first introduced in [12], for capturing the
similarity of the images generated by GANs, this metric also correlates with human judgement. FID
score for 2 identical images is 0, and for 2 identical sets of images or videos is close to 0. It increases
as the visual similarities between the two images or sets of images reduce as depicted in Figure 2. A
synthetic sequence with similar lighting, camera angle and elevation as the real sequence results in a
relatively lower FID in contrast to another real sequence that has different lighting, camera angle and
elevation. We use it to estimate the degree of similarity between synthetic and real images for each
pair of real and synthetic sequences.

Fig. 2: FID computation example for low level features be-
tween AirSim generated video sequence (top) with a simi-
lar looking (bottom-left) and a different looking (bottom-
right) real video sequence from UAVDT dataset. The com-
puted value towards the green end depicts similarity be-
tween the two sequences, and contrary to that towards the
red side depicts visual dissimilarity.

We computed the Fréchet Inception Distance for three combinations of real and synthetic datasets
from the first pooling layer features (FID64), the second max pooling features (FID192), the pre-
auxiliary classifier features (FID768) and the final average pooling features (FID2048)[28]. The com-
putations from the second max pooling (FID192) and the final average pooling (FID2048) features do
not add more information or echoes that the first max pooling features (FID64) and the pre-auxiliary
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classifier features (FID768) already express. Thus, we only use FID scores obtained from the first max
pool layer features and the pre-auxiliary classifier features for the low level features and the high level
features respectively. The FIDs for all synthetic and real datasets are plotted as heatmaps in Figure 3.

In the heatmaps, each row is a real sequence and each column is a synthetic sequence from corre-
sponding real and synthetic dataset pairs. Within the heat maps for low level features 3a, the com-
bination of UAVDT benchmark and AirSim generated dataset shows patterns of higher FID scores
for some real sequences while most of the real sequences have a relatively lower FID Score. The other
2 dataset combinations only observe a relatively low FID score for all real and synthetic sequence
pairings. Contrasting to this, the heatmaps for high level features 3b, show more patterns of high FID
scores for real sequences in all three dataset combinations. Interestingly, a pattern for high FID score
is also noticeable for synthetic sequences in the MOT17 and MotSynth datasets pairing. We discuss
these patterns further in this section.

These initial observations from the heatmaps motivate us to define rigid clusters based on the FID
computations. We cluster sequences under 3 categories namely, lower, moderate or higher degrees of
difference in low or high level features. This clustering is required to isolate features on the basis of
similarity and measure their impact on the performance of the training process. We later use these
clusters in further sections for experimentation and discussion.

For the clustering, we create a range between 0 (the minimum achievable distance) and the maxi-
mum calculated FID determined across all datasets plus an additional buffer. In our experiments the
max value for low level and high level featres were 45 and 3 with additional buffers of 5 and 0.5. We fit
all the sequences to this range and scale them to get a range between 0 and 1. This scale is divided into
three parts using 0.3 and 0.6 as the division points. The sequences that fall under the first, the second
and the third segment are termed as sequences with lower, moderate or higher degrees of difference
respectively. Although this work uses FID as a measure for calculating similarity, the use of other
metrics is also encouraged. FID was used because of the demerits of other metrics highlighted in [12].

3.1 FID for low level features

The FIDs obtained after first pooling layer features for the sequences from the UAVDT benchmark
and the AirSim generated dataset, sequences with a higher degree of difference have an average of
32.80 ±2.60, the same for sequences having a moderate degree of difference is 18.93 ±2.33 and finally
the sequences with a lower degree of difference have an average of 7.80 ±2.93. We observe that all
sequences in the VisDrone dataset compared to the synthetic dataset generated using AirSim have a
lower degree of difference for low level features with an average of 7.40 ±2.31. A similar observation
is made for the sequences from the MOT17 and the MOTSynth datasets, all the sequences lead to an
average of 8.66 ±3.48 thus falling under a lower degree of difference for low level features. The FIDs for
all synthetic and real sequences are visually represented in Figure 3a, where the green regions represent
the lower degree of difference, yellow-orange shades depict the moderate degree of difference and dark
orange-red represents the higher degree of difference.

3.2 FID for high level features

On the basis of the clustering scheme discussed earlier in this section and the FIDs obtained from
the pre-auxiliary classifier features for UAVDT and AirSim generated sequences, we cluster sequences
among low, medium or high degrees of difference for high level features among real data. The average
values for clusters are 1.60 ±0.05, 2.13 ±0.19 and 2.65 ±0.12 respectively. With the same synthetic
dataset when FID values are calculated along the VisDrone dataset the clusters obtained have 1.72
±0.01 for lower degree of difference, 2.07 ±0.22 for a moderate degree of difference and 2.76 ±0.21 for a
higher degree of difference in high level features. When calculating the FIDs with higher level features
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for MOT17 and MOTSynth datasets, we obtain 1.75, 1.99 ±0.16 and 2.72 for lower, moderate and
higher degrees of differences. Unlike other real and synthetic dataset combinations, we also observe a
pattern for synthetic sequences for MOT17 and MOTSynth. The average values for lower, moderate
and higher degrees of difference in high level features are 1.57 ±0.09, 2.01 ±0.20 and 2.68 ±0.18
respectively. We visualize these FID computations in the form of a heatmap in Figure 3b.

(a) FID64: Fréchet Inception Distance obtained
from first pooling features. Left: UAVDT and
AirSim, Right-Top: Visdrone and AirSim, Right-
Bottom: MOT and MOTSynth. Each row repre-
sents a real sequence and each column represents
a synthetic sequence.

(b) FID768: FID obtained from pre-auxiliary clas-
sifier features. Left: UAVDT and AirSim, Right-
Top: Visdrone and AirSim, Right-Bottom: MOT
and MOTSynth. Each row represents a real se-
quence and each column represents a synthetic se-
quence.

Fig. 3: FIDs heatmaps for low level features (a) and high level features (b). Dark green represents
lower degree of difference, dark red represents higher degree of difference, and the shades in between
represent moderate degree of difference in lower/higher level features.

3.3 Objectives
With the derived insights and our objective of impact investigation of synthetic data as a supplement
in combination with real data, we aim to answer the following questions:
– How effective is the use of synthetic data when supplementing a real dataset?
– What is the impact of different real-synthetic concentrations on the performance metric?
– What are the characteristics of the synthetic data that drive this change, the concentration, the

degree of diversity in information brought by the synthetic samples or both factors?

4 Experiments
In this section, we discuss in detail the synthetic and the real datasets that we use, our strategy to
answer the questions that were raised in the previous section and our trials.
4.1 Datasets
As already discussed briefly in Section 3, we generate a set of synthetic video sequences using the
AirSim plugin in Unreal engine. To generate the simulated video sequences, we load the environment
with a simulated drone and dictate its flight trajectory by a set of three-dimensional points in the
simulation environment transmitted through APIs. We assimilate input from the camera mounted on
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the virtual drone and detect vehicles within the field of view of the drone using another pair of APIs to
save frames and annotation to a local storage device. We also alter weather conditions across different
flight paths to create a diverse set of simulated video sequences. In total, we generated 25 sequences
exhibiting different weather conditions, providing a diverse range of scenarios for evaluation.

For the real dataset we use the Unmanned Aerial Vehicle Benchmark [7] (UAVDT) which is a
collection of video sequences captured by drones. This benchmark dataset offers sequences with various
conditions for illumination, camera viewpoint and elevation. To ensure that our experimentation is not
limited to a single dataset, we also conduct tests on another UAV detection and tracking dataset called
VisDrone [37]. It contains both city and country environments with annotations for many objects
in various weather and lighting conditions. Since our synthetic dataset only had information about
vehicles, we rank all the sequences on the most number of vehicles in the scene and only considered
the top 30 videos which had the most number of vehicles for our vehicle tracking experiments.

For the extensiveness of our experiments, we use another pair of real and synthetic datasets. MOT17
[19] dataset which is a pedestrian detection and tracking dataset with video sequences having different
viewports, camera movements and weather conditions. For the synthetic part, we used the MOTSynth
[8] dataset which was created for pedestrian detection, tracking and segmentation and contains frames
generated using a rendering game engine. We only required a limited number of sequences according
to our experiment setup and a random selection of 21 sequences is used to serve as the training set.

4.2 Strategy

We use models trained only on real datasets as baseline models to compare and evaluate against the
results obtained from models discussed further in our training strategy. In our strategy, we keep the
total number of real and synthetic training sequences constant, that is the number of real sequences
available for training. We then substitute real sequences with synthetic sequences. We focus on the
substitution and not on the addition of new data for two reasons. First, additional training data will
lead to unfair evaluation as the new dataset will have more training samples when compared to the
baseline model. Second, substitution creates an artificial scarcity of data enabling us to evaluate the
impact of synthetic data when the actual data is insufficient or missing. For these reasons, we formulate
an approach to break down the datasets into different-sized folds such that, a bigger chunk from the
real dataset has a complementary smaller fold in the synthetic dataset and vice-versa. The combined
dataset always accounts for the same number of total video sequences as originally in the training
set for the real dataset. For the vehicle tracking experiments, we use ratios 1:5, 1:2, 1:1, 2:1 and 5:1
between real and synthetic data i.e. when there are 5 real sequences we use 25 synthetic sequences, 10
real and 20 synthetic sequences and so on. For people tracking experiments, we use 1:6, 1:2, 2:1 and
6:1 as the ratios.

We use multiple folds for each concentration of real-synthetic combination to understand the con-
sistency of the change in the tracking metric with the real-to-synthetic data ratio. Within the folds,
we vary the number of sequences with lower, moderate and higher degrees of difference for low-level
and high-level features as discussed in the previous section. In our experiments, each fold is denoted
by a lowercase letter.

4.3 Training

For our experiments, we train FRCNN[23] network for object detection and ResNet50 [11] model
for re-identification, together these two models are used in combination as described in the Track-
tor[4] technique. The datasets, both real and synthetic are aimed for detection and tracking and not
for re-identification. To allow training of re-identification models on these sequences we create a re-
identification dataset from the given frames. We crop the frames where bounding boxes are present and
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use these crops for tracked objects as a re-identification dataset. We use the described setup of an object
detector and a re-identifier with different folds of the training set as discussed in Section 4.2. Models
trained on different folds are evaluated using HOTA[17] and IDF1 [26] as the calculative measures
for assessing performance. The metrics IDP and IDR are intermediatory measures that are needed to
calculate IDF1 value while DetA and AssA are used to calculate HOTA. The metrics are calculated
using trackeval [16]. The results of public detection from different manifestations of the Tracktor on the
UAVDT benchmark and the AirSim generated dataset are reported in Table 4, on VisDrone dataset
and AirSim generated dataset are reported in Table 5 and on MOT17 and MOTSynth are reported in
Table 6. Further, we discuss these results in Section 5.

Also, we extend the applicability of synthetic datasets to transformer-based architectures. We se-
lect the Transtrack [31] architecture, which is an encoder-decoder framework with a ResNet-50 [11]
backbone network. We train the models on MOT17 and MOTSynth datasets, using the same concen-
trations and folds as used for the Tracktor experiments. Results are reported in Table 7 and further
discussed in Section 5.

5 Discussion
Tables 4 and 6 show a significant increase in performance measure when synthetic data is included in
the training set against the benchmark that only contains all real data. The improvement is up to a 14%
increase for the UAVDT benchmark and up to a 10% increase for the MOT17 dataset. Also, Table 5
shows an increase up to 4% was achieved for the VisDrone dataset. Table 7 shows an increase up to 7%
for the MOT17 dataset on a transformer-based architecture. There is a positive correlation between
the percentage of synthetic data in the training set and the performance measure for the UAVDT
benchmark and the VisDrone dataset. The performance increase for the MOT17 dataset is moreover
constant and is not affected by changes in dataset concentrations on Tracktor but we again observe
the correlation between the number of synthetic samples and the tracking metric on transformer-based
architecture. We further discuss each dataset individually under the following subsections.

Real Set Synthetic Set
Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

5 a 25 a 84.232 83.500 77.950 63.984 83.864 70.489
5 b 25 a 84.877 83.538 75.616 63.979 84.202 69.405
5 c 25 a 78.229 78.535 67.812 59.057 78.382 63.134
5 d 25 a 90.251 87.227 77.166 70.266 88.713 73.504
5 e 25 a 85.501 84.279 72.327 62.985 84.885 67.313
5 f 25 a 85.632 83.054 76.823 64.676 84.323 70.378
10 g 20 b 88.740 82.318 73.588 67.232 85.409 70.252
10 h 20 b 82.459 81.612 68.126 62.729 82.033 65.235
10 i 20 b 87.303 81.945 69.367 64.190 84.539 66.584
15 j 15 c 90.029 79.524 66.662 66.109 84.451 66.259
15 k 15 c 87.484 80.520 67.165 63.453 83.858 65.163
20 l 10 d 81.393 78.686 64.573 61.158 80.016 62.722
20 m 10 e 89.997 76.785 62.950 65.291 82.868 64.004
20 n 10 f 85.122 75.669 62.724 63.897 80.118 63.146
25 o 5 g 81.287 75.073 60.347 60.683 78.057 60.378
25 p 5 h 82.752 77.801 62.214 61.078 80.200 61.513
25 q 5 i 81.746 78.741 64.828 61.166 80.216 62.832
25 r 5 g 86.904 69.093 54.706 62.014 76.982 58.104
25 s 5 h 83.274 74.501 61.816 62.026 78.644 61.744
25 t 5 i 82.871 78.444 63.305 61.988 80.597 62.432
30 u 0 NA 82.085 75.486 61.183 60.948 78.647 60.921

Fig. 4: Results for Tracktor technique trained on
datasets with different concentrations of UAVDT
benchmark (real) and AirSim generated dataset
(synthetic). Column Size denotes the number of
sequences and Fold denotes which fold was used.

Real Set Synthetic Set
Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

5 a 25 a 69.957 72.991 64.611 57.841 71.442 60.701
5 b 25 a 63.117 65.636 63.323 50.193 64.352 55.975
5 c 25 a 68.029 70.809 59.921 54.752 69.391 56.779
5 d 25 a 68.278 70.847 65.364 55.616 69.539 59.961
5 e 25 a 65.193 67.949 64.281 52.798 66.543 57.834
5 f 25 a 71.052 74.107 61.694 57.558 72.547 59.241
10 g 20 b 63.448 66.078 63.482 50.621 64.736 56.271
10 h 20 b 69.845 72.378 62.859 56.169 71.089 59.043
10 i 20 b 67.547 70.272 63.569 54.147 68.882 58.307
15 j 15 c 66.078 68.449 61.602 51.998 67.242 56.239
15 k 15 c 67.924 70.180 64.041 54.747 69.034 58.902
20 l 10 d 65.904 67.146 61.679 51.545 66.519 56.053
20 m 10 e 65.603 67.782 64.136 51.997 66.675 57.462
20 n 10 f 67.121 68.683 63.215 53.425 67.893 57.779
25 o 5 g 65.085 65.854 62.107 50.922 65.467 55.953
25 p 5 h 65.430 66.037 61.531 50.750 65.732 55.557
25 q 5 i 65.541 66.822 62.856 51.431 66.176 56.511
25 r 5 g 69.491 67.100 62.294 52.595 68.275 56.943
25 s 5 h 72.598 71.483 62.676 55.977 72.036 58.948
25 t 5 i 64.689 65.665 62.643 50.480 65.173 55.885
30 u 0 NA 64.324 64.601 61.910 49.864 64.462 55.252

Fig. 5: Results for Tracktor technique trained on
datasets with different concentrations of Visdrone
dataset (real) and AirSim generated dataset (syn-
thetic). Column Size denotes the number of se-
quences and Fold denotes which fold was used.
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5.1 UAVDT
We observe a direct link between the performance measure and the percentage of the synthetic dataset
in the overall training set, by increasing the number of synthetic samples we notice an increase in
the HOTA metric. It is highest when we use twenty-five synthetic samples and five real ones, and
lowest when use twenty-five real and five synthetic samples across a number of folds. Also, among
folds comprised of five real and twenty-five synthetic sequences, the HOTA metric is highest when the
training set includes sequences with a higher degree of difference for low level features. Additionally, in
the folds consisting of twenty-five real and five synthetic sequences, we notice that the HOTA metric
reduces when the folds are constituted from sequences with low or moderate degrees of difference for
low level features. All experiments are reported in Table 4.
5.2 VisDrone
Our findings indicate an increasing trend, albeit with a few deviations for the VisDrone and AirSim
datasets. The performance of models trained on different folds generally increases, except for the folds
where five sequences are synthetic the models perform worst than the benchmark but the performance
increases gradually as the percentage of synthetic data increases. Another deviation is remarked, where
models trained on folds with 20 synthetic sequences perform better than the models trained on folds
with synthetic data but the latter still outperforms the benchmark model.

With the FIDs analysis for low level features (Section 3.1) as the foundation, it is hard to come to
conclusions as all sequences for this dataset combination fall under a low degree of difference. Drawing
on the insights derived from the FID analysis for high level features (Section 3.2), experiments with
folds having 5, 10 or 15 real sequences, the fold having the most number of sequences with a lower
degree of difference for high level features outperforms the rest of the folds in that category.

Real Set Synthetic Set
Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

3 a 18 a 48.893 63.291 40.617 52.277 55.168 45.904
3 b 18 b 49.996 59.487 41.928 48.766 54.330 45.069
3 c 18 c 53.866 59.708 44.196 49.285 56.636 46.547
3 d 18 d 55.581 62.286 43.842 51.946 58.743 47.559
3 e 18 e 48.792 61.824 41.173 50.731 54.540 45.552
3 f 18 f 50.057 64.044 40.420 53.327 56.193 46.312
3 g 18 g 52.789 61.614 43.340 50.591 56.861 46.726
7 h 14 h 46.250 61.112 39.961 49.537 52.652 44.250
7 i 14 i 52.175 63.552 42.574 52.785 57.304 47.294
7 j 14 j 48.708 62.582 41.035 52.501 54.780 46.313
14 k 7 k 47.634 62.714 40.470 50.411 54.143 45.080
14 l 7 l 49.877 65.935 41.136 56.227 56.793 47.927
14 m 7 m 50.716 63.499 42.412 53.109 56.392 47.333
18 n 3 n 48.730 63.345 40.822 52.392 55.084 46.142
18 o 3 o 50.245 64.282 41.520 53.084 56.403 46.873
18 p 3 p 48.210 63.303 40.821 52.738 54.735 46.289
18 q 3 q 50.598 66.076 41.154 56.023 57.311 47.906
18 r 3 r 49.462 65.915 41.347 55.496 56.515 47.806
18 s 3 s 50.404 65.135 41.934 54.193 56.830 47.570
18 t 3 t 50.398 63.233 41.706 53.768 56.090 47.234
21 u 0 NA 34.597 46.205 40.230 32.198 39.567 35.883

Fig. 6: Results for Tracktor technique trained on
datasets with different concentrations of MOT17
dataset (real) and MOTSynth dataset (synthetic).
Column Size denotes the number of sequences and
Fold denotes which fold was used.

Real Set Synthetic Set
Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

3 a 18 a 62.653 53.443 45.824 49.286 57.683 46.968
3 b 18 b 44.166 72.288 39.513 67.894 54.831 51.514
3 c 18 c 66.111 57.044 47.974 51.432 61.244 49.268
3 d 18 d 67.937 55.626 45.120 53.142 61.168 48.695
3 e 18 e 67.314 64.160 49.847 55.861 65.699 52.523
3 f 18 f 74.162 59.827 51.015 56.889 66.228 53.463
3 g 18 g 62.410 57.089 43.517 53.589 59.631 47.928
7 h 14 h 44.227 73.213 40.035 67.432 55.143 51.738
7 i 14 i 62.208 64.166 48.555 54.669 63.172 51.261
7 j 14 j 63.459 66.120 49.082 58.896 64.762 53.421
14 k 7 k 43.836 78.055 40.616 68.205 56.142 52.385
14 l 7 l 45.196 79.390 41.596 68.821 57.600 53.242
14 m 7 m 60.775 67.998 48.565 59.332 64.184 53.390
18 n 3 n 44.370 78.334 41.759 68.752 56.651 53.378
18 o 3 o 42.178 77.860 40.276 66.858 54.716 51.656
18 p 3 p 44.261 77.375 40.184 69.770 56.311 52.751
18 q 3 q 43.894 78.164 41.590 66.904 56.218 52.510
18 r 3 r 43.388 79.442 40.974 69.318 56.124 53.073
18 s 3 s 60.466 59.020 44.717 56.860 59.734 50.124
18 t 3 t 44.689 81.538 41.186 69.973 57.735 53.523
21 u 0 NA 43.207 79.424 41.177 67.884 55.967 52.633

Fig. 7: Results for TransTrack architecture trained
on datasets with different concentrations of
MOT17 dataset (real) and MOTSynth dataset
(synthetic). Column Size denotes the number of
sequences and Fold denotes which fold was used.

5.3 MOT17
We observe up to 10% increase in HOTA metric for supplementing the MOT17 dataset with the
MOTSynth dataset. However, unlike the previous two benchmarks where an increasing trend was
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observed, our examination reveal about a constant increase in performance measure invariant of the
real-synthetic concentrations throughout the experiments.

Guided by the FIDs analysis of high level features, amongst the folds with 3 real sequences, the
HOTA metric is the least when trained on samples with higher degree of difference for high level
features in comparison to when these samples are excluded. The same is observed in folds with 7
real sequences. This phenomenon becomes hazy for folds with 18 real scenarios. Also to note, the
performance metric improves when sequences with higher degree of difference are excluded from the
folds comprising synthetic data.

Experiments with the TransTrack architecture show a similar result, an almost constant trend
for the HOTA metric. However, the trend is clearly visible in the IDF1 metric. The performance of
the model is directly correlated with the amount of synthetic data in the training dataset. The fold
including the sequences with a higher degree of difference for high-level features, always performs the
worst among the folds of the same size.

Fig. 8: Change in HOTA and IDF1 measures on increasing the concentration of synthetic samples
in the training set for Tracktor on UAVDT benchmark, VisDrone dataset and MOT17 dataset; for
TransTrack on MOT17 dataset.
5.4 Guidelines
Considering the key insights derived in this section we can deduce that by using synthetic data, one
can increase the performance of a model. We derive the following principles from our experiments.
– When synthetic data is used in orders of magnitudes of real data a performance can be anticipated.

In our experiments, the increase in performance was up to 15% when synthetic data accounted five
times more than the actual video sequences.

– The performance improvement is higher when the variance in low-level features is high. In our
experiments, we clustered sequences with values greater than 0.6 on our scale (FIDs greater than
30 units calculated from first pooling layer features) as a high degree of difference for low-level
features. The presence of these sequences resulted in a better performance.

– The increase in performance is limited by the variance in high-level features and is recommended
to be kept minimal. Our experiments with sequences with values lower than 0.3 on our scale(
under 1.75 units for FIDs calculated from pre-auxiliary classifier features) showed an increased
improvement.

6 Conclusion

In this study, we investigated the effectiveness of using synthetic data in combination with real data
for Single Camera Multi-Object Tracking tasks. We utilized three different datasets and two different
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tracking techniques to evaluate the impact of using synthetic data. Our results indicate that the
inclusion of synthetic data in the training process of deep learning models improves the performance
metrics when compared to using real data alone. Furthermore, we also explored the specific aspects of
synthetic data that should be emphasized to further enhance the performance of the models.

Our findings suggest that the combination of real and synthetic data can lead to a new paradigm
for training deep learning models. While synthetic data has traditionally been used for pre-training
or domain adaptation, our study highlights the potential for a simpler technique to complement real
data in the training process. We aim to validate the application of synthetic data for solving challenges
such as bias mitigation, generalization of outside datasets, and wider applicability of existing datasets
in our future works. We believe that this approach can lead to improved performance in a range of
computer vision tasks and can pave the way for the development of more sophisticated and accurate
models. Overall, this paper contributes to the growing body of research on the use of synthetic data
and its potential for enhancing the capabilities of deep learning models.
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