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ABSTRACT
In this paper we present a novel system for the detection
and extraction of road map information from high-resolution
satellite imagery.
Uniquely, the proposed system is an integrated solution that
merges the power of perceptual grouping theory (gabor fil-
tering, tensor voting) and segmentation (graph-cuts) into a
unified framework to address the problems of road feature
detection and classification. Local orientation information
is derived using a bank of gabor filters and is refined us-
ing tensor voting. A segmentation method based on global
optimization by graph-cuts is developed for segmenting fore-
ground(road pixels) and background objects while preserv-
ing oriented boundaries. Road centerlines are detected using
pairs of gaussian-based filters and road network vector maps
are finally extracted using a tracking algorithm.
The proposed system works with a single or multiple images,
and any available elevation information. User interaction is
limited and is performed at the begining of the system execu-
tion. User intervention is allowed at any stage of the process
to refine or edit the automatically generated results.

1. INTRODUCTION
Traditional road mapping from aerial and satellite imagery
is an expensive, time-consuming and labor-intensive process.
Human operators are required at every part of the process to
mark the road map in the images. In recent research, sev-
eral computer vision based systems were proposed for the
semi-automated or automated road map extraction. How-
ever, the gap between the state of the art and the goal still
remains wide. Currently, there is no existing method which
allows for the complete and reliable extraction of road map
information from aerial and satellite imagery. Hence, there
is still a need for an automated procedure that can reliably
and completely detect and extract road networks and update
road databases in Geospatial Information Systems.

In this work, we propose an integrated system for the auto-
matic detection and extraction of road networks from aerial

and satellite images. To our best knowledge, there is no
work done in combining perceptual grouping theories and
segmentation using graph-cuts for the automatic extraction
of road feature.

Gabor filters tuned at varying orientations and frequencies
are used to extract features of special interest. A tenso-
rial representation which allows for the encoding of multiple
levels of structure information(points, curves, surfaces) for
each point is used to represent the features extracted by the
filters. Such a representation is very efficient when dealing
with noisy, incomplete and complicated scenes. The classi-
fication of the encoded features is then based on a tensor
voting communication process that is governed by a percep-
tual field, encoding the constraints and rules of how a point
receives/casts votes from/to its neighbors. The accumula-
tion of votes at each point provides an accurate estimate of
the features going through the point (Section 3).

An orientation-based segmentation using graph-cuts is used
to segment the road candidates using the refined feature in-
formation resulting from the tensor voting process (Section
4). The road centerlines are then detected using a pair of
bi-modal and single mode gaussian-based kernels which re-
spond to parallel lines and flat areas respectively. Finally,
a tracking algorithm is used to extract the road network
vector map (Section 5).

2. BACKGROUND AND RELATED WORK
Several techniques have been proposed and developed so
far and can be separated into three main categories: pixel-
based, region-based and knowledge-based.

2.1 Pixel-based
Edge detection. The goal of edge detection is to find
at which points in the image the intensity value changes
sharply. Although, many edge detectors [4, 15, 14, 6] al-
ready exist, none of them can extract complete road seg-
ments from a given image. Instead, the output is a list of
possible edge points which have to be processed further. In
[1] lines are extracted in an image with reduced resolution
as well as roadside edges in the original high resolution im-
age. Similarly, [11] uses a line detector to extract lines from
multiple scales of the original data. [17] applies Steger’s dif-
ferential geometry approach [16] for the line extraction.
Road detection. Road detection is performed using a
model of a road or a modified edge detector. The goal is
to detect the roads as parallel lines separated by a constant



width. In [10] they use a multi-scale ridge detector [16] for
the detection of lines at a coarser scale, and then use a local
edge detector [4] at a finer scale for the extraction of parallel
edges. Linking the two edges together, creates a ”ribbon”,
which is then optimized using a variation of the active con-
tour models technique-snakes introduced by [9].

2.2 Region-based
The goal of the region-based techniques is to segment the im-
age into clusters using classification or region-growing algo-
rithms. In [19] they use predefined membership functions for
road surfaces (spectral signature, reflectance properties) as
a measure for the image segmentation and clustering. Like-
wise, in [5] they use the reflectance properties, from the ALS
data and perform a region growing algorithm to detect the
roads. [8] uses a hierarchical network to classify and segment
the objects.

2.3 Knowledge-based
Knowledge can have several forms. In [17], human input is
used to guide a system in the extraction of context objects
with associated confidence measures. A similar approach is
used for context regions where rural areas are extracted from
the SAR images and a weight is assigned to each region. The
system in [18] integrates knowledge processing of color image
data and information from digital geographic databases, ex-
tracts and fuses multiple object cues, thus takes into account
context information, employs existing knowledge, rules and
models, and treats each road subclass accordingly. [5] uses a
rule-based algorithm for the detection of buildings at a first
stage and then at a second stage the reflectance properties
of the road. Explicit knowledge about geometric and radio-
metric properties of roads is used in [17] to construct road
segments from the hypotheses of roadsides.

3. PERCEPTUAL GROUPING
3.1 Gabor Filtering
We employ a bank of gabor filters tuned at 8 different ori-
entations θ linearly varying from 0 ≤ θ < π, and at 5 dif-
ferent high-frequencies(per orientation) for multi-scale anal-
ysis. The remaining parameters of the filters are computed
as functions of the orientation and frequency parameters as
in [7]. The filtered images are then grouped according to the
orientation of the filters, thus resulting in 8 images; one per
orientation. The higher the response of a point in an im-
age, the more likely that the feature at that point is aligned
to the direction of the filter used to produce the image and
vice-versa. Finally, all pixels in the resulting 8 images are
encoded into tensors as explained in the next section.

3.2 Tensor Voting Overview
Tensor voting is a perceptual grouping and segmentation
framework introduced by [13]. The data representation is
based on tensor calculus and the communication of the data
is performed using linear tensor voting.
In this framework, a point x ∈ R3 is encoded as a second
order symmetric tensor which captures the geometric infor-
mation for multiple feature types(junction, curve, surface)
and a saliency, or likelihood, associated with each feature

type passing from that point x. A tensor T is defined as,
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where λ1 ≥ λ2 ≥ λ3 ≥ 0 are eigenvalues, and ~e1, ~e2, ~e3

are the eigenvectors corresponding to λ1, λ2, λ3 respectively.
By applying the spectrum theorem, the tensor T in equation
2 can be expressed as a linear combination of three basis
tensors(ball, plate and stick) as in equation 3.
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In equation 3, (~e1~e

T
1 ) describes a stick(surface) with associ-

ated saliency (λ1 − λ2) and normal orientation ~e1, (~e1~e
T
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2 ) describes a plate(curve) with associated saliency (λ2−

λ3) and tangent orientation ~e3, and (~e1~e
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scribes a ball(junction) with associated saliency λ3 and no
orientation. The geometrical interpretation of tensor decom-
position is shown in Figure 1(a). Every point in the images

(a) 3D Tensor decom-
position.

(b) Votes casting. (c) Example
result

Figure 1: (a)Tensor decomposition,(b)vote cast-
ing,(c)Before (left) and after (right) the tensor vot-
ing..

computed previously is encoded using equation 1 into a unit
plate tensor with its orientation ~e3 aligned to the filter’s
orientation and is scaled by its response in the filtered im-
age, therefore giving 8 differently oriented tensors per point.
Adding the 8 tensors of each point gives a tensor describing
the feature types passing through that point.

The tensor encoded points then cast a vote to their neigh-
bouring points which lie inside their voting fields, thus prop-
agating and refining the information they carry(Figure 1(b)).
For a comprehensive analysis and further details refer to [13].
Figure 1(c) shows the test image with an incomplete polygon
in white and the resulting curves being overlaid in yellow.
As it is obvious, most of the discontinuities were succesfully
and accurately recovered by this process.

A process which combines the local precision of the gabor
filters with the global context of tensor voting is performed,
as a series of sparse and dense votings similarly to [12]. Fi-
nally, by analyzing the information encoded in the tensors
the most dominant feature type of each point is determined
as the feature type with the highest associated likelihood(i.e.



λ1−λ2, λ2−λ3, λ3 in equation 3). The classified curve points
with their associated orientation information computed are
then used to guide the orientation-based segmentation pro-
cess.

4. ORIENTATION-BASED SEGMENTATION
USING GRAPH-CUTS

The result is a segmented foreground image consisting of
road candidate points, and a background image consisting
of non-road and vegetation points.

4.1 Graph-cut Overview
In [3, 2] the authors interpret image segmentation as a graph
partition problem. Given an input image I, an undirected
graph G =< V, E > is created where each vertex vi ∈ V cor-
responds to a pixel pi ∈ I and each undirected edge ei,j ∈ E
represents a link between neighbouring pixels pi, pj ∈ I. In
addition, two distinguished vertices called terminals Vs, Vt,
are added to the graph G. An additional edge is also created
connecting every pixel pi ∈ I and the two terminal vertices,
ei,Vs and ei,Vt . For weighted graphs, every edge e ∈ E has
an associated weight we. A cut C ⊂ E is a partition of the
vertices V of the graph G into two disjoint sets S,T where
Vs ∈ S and Vt ∈ T . The cost of each cut C is the sum of the
weighted edges e ∈ C. The minimum cut problem can then
be defined as finding the cut with the minimum cost which
can be achieved in near polynomial-time [3].

The binary case can easily be extended to a case of multi-
ple terminal vertices. We create two terminal vertices for
foreground O and background B pixels for each orientation
θ for which 0 ≤ θ ≤ π. In our experiments, we have found
that choosing the number of orientation labels in the range
Nθ = [2, 8] generates visually acceptable results. Thus the
set of labels L has size |L| = 2 ∗ Nθ and is defined to be
L = {Oθ1 , Bθ1 , Oθ2 , Bθ2 ..., OθNθ

, BθNθ
}

4.2 Energy minimization function
Finding the minimum cut of a graph is equivalent to finding
an optimal labeling f : Ip −→ L which assigns a label l ∈
L to each pixel p ∈ I where f is piecewise smooth and
consistent with the original data. Thus, our energy function
for the graph-cut minimization is given by

E(f) = Edata(f) + λ ∗ Esmooth(f) (4)

where λ is the weight of the smoothness term.
Energy data term. The data term provides a per-pixel
measure of how appropriate a label l ∈ L is, for a pixel
p ∈ I in the observed data and is given by,

Edata(f) =
X
p∈I

Dp(fp) (5)

where Dp(fp) = ε +
1−ln(P (Ip|f(p)))

1+(θp−θf(p))
2 .

Energy smoothness term. The smoothness term pro-
vides a measure of the difference between two neighbouring
pixels pi, pj ∈ I with labels li, lj ∈ L respectively. Let Ip

and Iq be the intensity values in the observed data of the
pixels p, q ∈ I respectively. Similarly, let θp and θq be the
initial orientations for the two pixels. We define a measure

of the observed smoothness between pixels p and q as

∆p,q = ε +
1 + (Ip − Iq)

2

1 + (θp − θq)2
(6)

The above function favors towards neighbouring pixels with
similar intensities and orientations and penalizes otherwise.
In addition, we define a measure of smoothness for the global
minimization. Let If(p) and If(q) be the intensity values
under a labeling f . Similarly, let θf(p) and θf(q) be the
orientations under the same labeling. We define a measure
of the smoothness between neighbouring pixels p, q under a
labeling f as

˜∆p,q = ε +
1 + (If(p) − If(q))

2

1 + (θf(p) − θf(q))2
(7)

Using the smoothness measure defined for the observed data
and the smoothness measure defined for any given labeling
we can finally define the energy smoothness term as follows,

Esmooth(f) =
X

{p,q}∈N

Kp,q ∗ ˜∆p,q (8)

where N is the set of neighbouring pixels, Kp,q = [e
−∆2

p,q

2∗σ2 ],
ε is a small positive constant and σ controls the smoothness
uncertainty.

The energy function E(f) penalizes heavily for severed edges
between neighbouring pixels with similar intensity and ori-
entation, and vice versa, which results in better defined
boundaries as shown in the comparison presented in Figure
2.

(a) Original
image.

(b) Intensity-
based.

(c)
Orientation-
based.

(d) Differ-
ence image

Figure 2: Comparison between intensity- and
orientation-based segmentation.Difference image
color codes - (red: common points, green: only in
inten. segm., blue: only in orient. segm.)

5. ROAD EXTRACTION
5.1 Parallel-line Detection
A bi-modal gaussian-based filter is applied on the curve
saliency map returned by the tensor voting to detect parallel-
lines. In order to ensure that the parallel-lines correspond
to road sides a single mode gaussian-based filter is applied
on the segmented road pixels(binary image). This ensures
that the area between the parallel-lines is part of a road and
not a false positive for example, a road-side and a building’s
boundary along the side of the road. Three types of infor-
mation is extracted for each point: the maximum response
at each point and, the orientation and width corresponding
to the maximum response. This information is then used by
the road tracking algorithm to form road segments.



5.2 Road Tracking
Starting from a centerline pixel the road tracking algorithm
recursively connects the best neighbouring match. The best
match is determined based on the magnitude, orientation
and width differences. The result is a set of connected road
segments which are finally merged and converted to a vector
map.

6. EXPERIMENTAL RESULTS
In our experiments, the smoothness term in 4 was set as
λ = 0.25 and the number of orientation labels used Nθ = 8.

(a) Original (b) Orientation-
based segmentation

(c) Centerline ex-
traction

(d) Extracted road
network

Figure 3: Automatic mode(No user interven-
tion),High resolution satellite image of an urban site
with no additional elevation information. In (a),(b)
the marked areas show occlusions and shadows.
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