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Abstract—We propose a complete framework for the automatic modeling from point cloud data. Initially, the point cloud data are

preprocessed into manageable datasets, which are then separated into clusters using a novel two-step, unsupervised clustering

algorithm. The boundaries extracted for each cluster are then simplified and refined using a fast energy minimization process. Finally,

three-dimensional models are generated based on the roof outlines. The proposed framework has been extensively tested, and the

results are reported.

Index Terms—Three-dimensional reconstruction, 3D modeling, point cloud, clustering, segmentation, shape refinement
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1 INTRODUCTION

THE automatic generation of three-dimensional (3D)
models and, in particular, the rapid and automatic

modeling from point cloud data has been, and still is, of
significant interest to the computer graphics and computer
vision communities. An increasing number of applications
require the use of models ranging from computer games
and visual effects to flight simulators for training personnel.
Somewhere in this wide range, there exists a set of
specialized applications such as geographical information
systems, which require high-fidelity 3D replicas of the real
world, for example, large-scale urban areas. Other exam-
ples of popular specialized applications include urban
planning, emergency management training, military train-
ing, and so on.

In this work, we present a complete framework for
automatic modeling from point cloud data. First, the
unstructured, noisy point cloud data are preprocessed and
split into memory manageable datasets. Second, a novel
unsupervised clustering algorithm separates each dataset
into clusters based on a hierarchical statistical analysis of
the points’ geometric properties. Third, the boundaries
extracted for each cluster are refined using a fast energy
minimization with graph cuts. An important advantage of
this technique is the fact that it reduces the number of
boundary orientations because it penalizes the different
orientations by taking into account the newly proposed
label costs [1]. Finally, 3D models are generated by
extruding the roof outlines. The result is a set of non-
overlapping, vastly simplified, watertight, polygonal 3D
models. The proposed framework has been extensively
tested with several large point cloud datasets, and the
results and performance are reported.

Our technical contributions are as follows:

. A complete framework for the automatic modeling
from point cloud data.

. A robust unsupervised clustering algorithm P2C,
based on a hierarchical statistical analysis of the
geometric properties of the data.

. A fast boundary refinement process based on energy
minimization with graph cuts.

The paper is organized as follows: In Section 2, we
provide a brief overview of the state of the art in the area.
Section 3 presents an overview of the proposed framework,
and Section 4 describes the preprocessing process. In
Section 5, we present the unsupervised clustering algorithm
P2C, and in Section 6, we present the boundary extraction
and refinement process. Finally, Section 7 presents the
results produced by the proposed framework and Section 8
their evaluation.

2 RELATED WORK

Reconstruction from point cloud data has been a very active
area in computer vision. Many methods have been proposed
for automatic modeling from point cloud data. Below, we
provide a brief overview of the state of the art.

Lafarge et al. [2] present a structural approach for
building reconstruction from single digital surface models
using a library of 3D parametric blocks. The building
boundaries are extracted interactively (or automatically in
simple cases), and primitives are fitted to the extracted data.
A Bayesian decision then finds the optimal configuration
between the primitives using a Markov Chain Monte Carlo
sampler associated with original proposition kernels.
Although the results appear impressive, the process,
however, is computationally expensive and very hard to
scale up to large-scale datasets because it requires (as
reported in their paper) about 3 hours of human labor and
35 minutes of computing to reconstruct about 800 objects.

The same authors [3] proposed a hybrid approach that
uses geometric 3D primitives such as planes, cylinders, and
so on, and combines them with patches from the mesh
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corresponding to irregular roof components. The geometric
primitives and the other urban components are then
arranged in a common planimetric map through a multi-
label energy minimization formulation. Finally, the objects
are represented in 3D using various template fitting and
meshing procedures.

Symmetries occurring in the geometry of the data have
also been exploited in recent work [4] to refine or extract
geometric primitives. Of particular interest is the mesh-
simplification approach proposed by Zhou and Neumann
[5] in which a data-driven approach is applied where global
regularities appearing in singled-out buildings are identi-
fied and enforced through an iterative process of alignment
steps. At each step, planes are fitted and aligned on the
point cloud data, the height and position of the segments
are aligned, and then the final model is generated.

Verma et al. [6] propose a technique for the automatic
recognition and estimation of simple parametric shapes.
First, they begin by segmenting the roof and terrain points
to infer the roof topology using subgraph matching. Their
technique scales well with large-scale datasets; however,
the subgraph matching (an NP-complete problem) re-
mains the Achilles’ heel of their system.

A more recent approach proposed by Xiao and Furukawa
[7] exploits the abundance of ground-level images in
combination with 3D scans to automatically reconstruct
high-fidelity 3D textured models of interior areas. Using
their proposed algorithm, which is called inverse-CSG, they
report very impressive results. Addressing the same pro-
blem of reconstructing interior areas, Huber and Adán [8]
propose a method that relies only on 3D scanned data for the
detailed modeling of wall surfaces in the presence of
occlusions and clutter. Similarly, Turner and Zakhor [9]
present a novel approach of generating floor plans that fits
curves as well as straight segments with indoor walls and are
guaranteed to be watertight. The results seem promising
provided there is minimal registration error.

On a different note, Friedman and Stamos [10] propose
an online algorithm for the detection and extraction of
repeated structures in point cloud data and present
promising results. The processing is done automatically
without user interaction or training data, and the detection
of the repeated structures allows for compressing large-
scale data while maintaining their architectural details.

Although a plethora of techniques have been proposed
for processing point cloud data, the gap between the state of
the art and the desired goal of automatic modeling from
point cloud data still remains wide. In this work, we
introduce a framework that does not make any particular
assumptions about the data, for example, spatial coherence,
symmetry constraints, and so on, and its performance and
the quality of the results are independent of the size of the
data. Moreover, the proposed framework is fully automatic
and does not require interaction with the user to mark roof
boundaries nor to exactly separate the points corresponding
to a building.

3 TECHNICAL OVERVIEW

The proposed framework is comprised of three main phases:
the preprocessing of the data, the main parallel processing for

the automatic modeling of 3D models, and the postproces-

sing of the results. Fig. 1 shows the processing pipeline.
First, a point cloud captured by an airborne LiDAR

scanner is structured and subdivided into subcubes. This

results in a set of memory manageable components and

ensures that all further processing is performed indepen-

dently. Then, each subcube is processed in parallel in

three steps:

1. An unsupervised clustering algorithm P2C is ap-
plied that results in a set of small area patches.
Neighboring patches are then merged into higher
level geometric elements, called surfaces, based on
their similarity.

2. The boundaries for each of the resulting surfaces are
extracted and refined using a novel refinement
process based on energy minimization using graph
cuts.

3. The boundaries corresponding to each surface are
extruded to form polygonal 3D models.

Finally, the resulting 3D models corresponding to each of

the subcubes are merged together.

4 PREPROCESSING

The first step in the processing pipeline is the preparation of

the input data. Initially, the data have the form of a point

cloud where each point in the cloud represents a Cartesian

coordinate in 3D euclidean space. When dealing with such a

type of data, one has to take into account the several issues

that exist.
A typical problem that arises when dealing with the

reconstruction of large-scale areas is the vast amount of data

involved which quite often cannot be processed effectively

as a single dataset. The size of a point cloud representing a

large-scale area such as a city depends on 1) the size of the

scanned area, and 2) the resolution of the scanning device

and typically can range from a few million points to several

hundred million points.
Another common problem is the random error intro-

duced to the captured data due to the imperfect calibrations

of the measurement instruments and unknown/unpredict-

able changes in the environment. Moreover, the data are

unstructured and contain holes because they result from the

merging of several scans (sweeps) of the same area. This, in

2564 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Fig. 1. Processing pipeline—three phases: the preprocessing of the
data, the main parallel processing for 3D model generation, and the
postprocessing of the results.



effect, significantly reduces and in some cases eliminates the
spatial coherence in the data.

To overcome these problems and reduce the computa-
tional complexity, Isenburg et al. [11] proposed a streaming
approach that exploits the natural spatial coherence in a
stream of points. An advantage of this approach is that it
considerably accelerates the triangulation in cases where
spatial coherence exist in the data. Further processing [12]
can then be performed efficiently on large point clouds.

An alternative methodology for dealing with the afore-
mentioned problems was proposed by Poullis and You [13],
where the point cloud is divided into memory manageable
components that are processed independently. This ap-
proach has the advantage of allowing parallel processing of
each component since there is no information sharing
between them. This, however, introduces “seams” between
the final models corresponding to each component, which
requires a postprocessing merging step to remove.

Following the latter approach, we employ an improved
out-of-core variant. The first step is to structure the data

into a more efficient and usable form such as octrees. This is
achieved by first computing the bounding cube enclosing
the total point cloud data, then subdividing the bounding
cube into memory manageable subcubes, and finally,
assigning the points into appropriate subcube. The initial
resolution of each subcube is defined by the user
(rx ¼ ry ¼ rz ¼ 2K for all datasets shown unless stated
otherwise). The internal representation for each subcube is
an XYZ map stored as a high-dynamic range image able to
retain the entire range of values of each point without loss
of information due to quantization. A subcube can be
adaptively subdivided (into eight subcubes, each having
half the resolution of the original) whenever the maximum
permissible number of points assigned to the subcube is
exceeded (i.e., 2;048� 2;048 points). To enable the applica-
tion of this technique to datasets of arbitrary sizes, the
assignment of the data to the subcubes is performed out of
core: Each time a point is assigned to a subcube, it is saved
to disk. Once all the points have been assigned to the
subcubes, we apply an edge preserving smoothing (bilateral
filter) and hole filling (based on local neighborhood
information) to remove the noise and the holes, respec-
tively. All subsequent processing is performed on each
subcube separately.

The result is a set of subcubes saved on disk, each
containing zero or more points. The complexity of the data
preparation step is Oð2NÞ, where N is the total number of
points in the dataset and 2 represents the number of
traversals needed: one for computing the bounding cube
and one for assigning each point into the appropriate
subcube.

Dataset A representing a large US city is shown in Fig. 2.
The dataset consists of about 120 million points and covers an
actual area of about 17 km2. During data preparation, the
dataset is structured and subdivided into five subcubes, each
with an initial resolution of 2K� 2K� 2K. The points are
color coded according to the subcube to which they belong.

Fig. 3 shows a closeup of the result of the data
preparation step for dataset B having lower resolution than
dataset A and containing about 30 million points. The actual
size of the area covered is about 16 km2. The dataset is
structured and subdivided into 10 memory-manageable
subcubes, each with an initial resolution of 2K� 2K� 2K.
The size of each subcube is automatically determined based
on the user-specified maximum memory available. In this
example, each subcube contains on average about three
million points.
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Fig. 2. Dataset A consisting of about 120 million points is structured and
subdivided into five subcubes, each with an initial resolution of
2K� 2K� 2K.

Fig. 3. (a) Dataset B. Structured and subdivided into memory-manageable color-coded subcubes shown in (b). The actual size of the area is about
16 km2. The dataset consists of about 30 million points.



5 P2C—AN UNSUPERVISED CLUSTERING

ALGORITHM

The points contained in the subcubes comprise a finite set of
geometric elements corresponding to various structures in
the world such as buildings, trees, and so on. In this section,
we present the robust unsupervised clustering algorithm
P2C. P2C is based on a hierarchical statistical analysis of the
geometric properties of the data and consists of two steps:
the clustering of points into patches described in Section 5.1
and the clustering of patches into surfaces explained in
Section 5.2.

5.1 Point Clustering

We leverage the knowledge that points corresponding to the
same structure exhibit similar geometric properties and
cluster the data into multiple separate geometric elements
called patches. To achieve this, we build upon the algorithm
presented by Poullis and You [14] and propose a second step
of hierarchical processing on the local geometry informa-
tion. Instead of separating the information into depth and
normal distributions and processing each one indepen-
dently, we propose a more efficient, integrated method.

Each point P is represented using a six-dimensional
feature vector fP describing the local geometry and is
given by

fP ¼ hNx;Ny;Nz; Pz; hvar; nvari; ð1Þ

where Nx, Ny, and Nz are the components of the normal at
each point computed by averaging the eight-neighborhood
normal vectors, Pz is the height of the point, hvar is the local
height variance around the eight neighbors of the point, and
similarly, nvar is the local normal variance around the eight
neighbors of the point.

The local variances (hvar and nvar) capture the relative
change of the height and normal at each point with respect
to the neighborhood. This is a very significant factor in the
feature vector fP that resolves commonly occurring
problems with slanted linear and uniformly varying non-
linear surfaces. For example, consider the simple 1D case of
points lying on a slanted linear surface in Fig. 4a. If only
height measurements are considered when comparing the
points, the result will be separate clusters for each point,
i.e., the well-known “staircase” effect. However, if con-
sidering the relative change between the points, then this
problem is overcome (up to a factor controlled by
parameter �). Similarly, in the case of points lying on a
uniformly varying nonlinear surface in Fig. 4b, although the

height measurements of the points are again different, the
height and normal variance at each point is approximately
the same; hence, it will result in clustering the points
together (up to a factor controlled by parameter �). This
reduces cocentric clusters commonly occurring when
clustering sampled points from nonlinear surfaces.

5.1.1 Initialization

Next, a new patch �i is initialized, and its associated
probability density function (pdf) ��i is computed for an
initial starting point Pj in the dataset. The pdf is modeled by
a six-dimensional Gaussian function ��i ¼ N �ið ~��i ;��iÞ
which describes the relative likelihood of a tuple of random
variables, i.e., the feature vector of each point hfPji (1), to
occur at a given point in the observation space. Initially, the
pdf ��i corresponding to patch �i contains only the feature
vector fPj associated with the initial point Pj.

5.1.2 Iterative Processing

The clustering continues in an iterative fashion, each time
considering all n neighboring points of Pj, P 1�n and
determining the likelihood of their associated feature vectors
fP 1�n as being (or not) part of ��i . A likelihood test �ðfPkÞ
determines if the feature vector fPk of point Pk is added to ��i
and, if successful, the mean and covariance matrix are
recalculated. After the recalculation, care must be taken so
that the first three components representing the normal
vector at each point remain normalized, i.e., kNx;Ny;
Nzk2 ¼ 1. This process is repeated until all candidate
neighboring points fail the likelihood test, in which case the
next patch �iþ1 with pdf ��iþ1

is created and a point from the
rejected candidate points is chosen as the new starting point.
The process is repeated until all points belong to a patch.

5.1.3 Likelihood Test �ðfPkÞ
Considering that the likelihood of a point Pk with feature
vector fPk being part of a patch �i with pdf ��i is given by
N �iðfPkÞ, the likelihood test is defined as follows:

�ðfPkÞ ¼ 1; if N �iðfPkÞ � N �ið ~��i � � � ~diagð��iÞ
0; otherwise;

�
ð2Þ

where ~��i and ��i are the mean and covariance matrix of
N �i , respectively, ~diagð��iÞ is the diagonal vector of the
covariance matrix, and � is empirically assigned the value of
1 as follows: Considering that a Gaussian distribution
requires 6�� 1 values (3� about the mean) and that we are
interested in small perturbations around the mean, therefore
the value of � must lie within the range of [0-1.5]. After
several experiments, we reached the conclusion that the
value of 1 is the best tradeoff between the number of
rejections/acceptances (by definition, 68 percent of the
values lie within 1 standard deviation of the mean). It
should also be noted that decreasing the value of � will
result in more clusters. However, during the second step, the
patch clustering will again merge them into a minimal
number of patches. In other words, changing the value of the
parameter will affect the performance and not the accuracy.

5.1.4 Implementation Issues

At the initial stages of the iterative processing, each pdf
contains only a few feature vectors. These are degenerate
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Fig. 4. (a) A slanted, linear surface. (b) A uniformly varying nonlinear
surface. Incorporating the height and normal variances instead of only
the height and normal measurements reduces problems during
clustering, i.e., “staircase” effects in (a), and “co-centric” effects in (b).



cases that not only cause difficulties with the subsequent
calculations of the covariance matrix (zero matrix inver-
sion), but also result in continuous rejections from the
likelihood test in (2). Consider, for example, the case where
only one feature vector is contained in the pdf. In this case,
all values of the diagonal vector of the covariance matrix

~diagð��iÞ will equal zero and as a result the likelihood test
�ðfPkÞ reduces to

�ðfPkÞ ¼ 1; if N �iðfPkÞ � N �ið ~��iÞ
0; otherwise;

�
ð3Þ

which is true if fPk equals with ��i . To resolve this problem,
we introduce a control function �ðnÞ that ensures that the
initial values of the diagonal vector of the covariance matrix
are nonzero and is given by

�ðxÞ ¼ e
1

maxð	;xÞ; ð4Þ

where x is the number of tuples contained in a pdf so far
and 	 ¼ 10�6. Intuitively, during the early stages where only
a few tuples are contained in the pdf, the control function
�ðxÞ increases the likelihood of two tuples belonging to the
same pdf. As the number of tuples contained in the pdf
increases, the computation of the mean and covariance
matrix become more stable and the effect of the control
function �ðxÞ is diminished.

The result of the point clustering is a set of disjoint patches,
each containing points with small spatial disparity and of
similar feature descriptions. The computational complexity
of this step is a constant Oð4NM � 3ðN þMÞ þ 2Þ, where N
and M are the width and height of each XYZ map
representing each cube. Fig. 5a shows the clustered points
into patches for a sample area.

5.2 Patch Clustering

The patches are merged to form higher level geometric
elements, called surfaces, as explained below.

Neighboring patches corresponding to the same struc-
ture are likely to have similar geometric properties. Hence,
their pdfs modeling the distribution of these properties are
expected to be similar. We leverage this characteristic and
iteratively compare the pdfs of neighboring patches using
as a metric the Bhattacharya distance.

The Bhattacharyya distance dbhat is a computationally
very simple quantity that measures the separability
between two normal distributions N 1 ¼ h~�1;�1i and N 2 ¼
h~�2;�2i and is given by

dbhat ¼
1

8

�
~�2 � ~�1

�T �1 þ �2

2

� ��1�
~�2 � ~�1

�
þ 1

2
ln
j �1þ�2

2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jj�2j

p :

ð5Þ

Equation (5) gives the separability between two normal
distributions; the first term measures the separability due to
the difference of the means ~�1 and ~�2, whereas the second
term measures the separability due to the difference
between the covariance matrices �1 and �2. The range of
values for the Bhattacharyya distance jdbhatj is ½0;1Þ,
starting with dbhat ¼ 0 in the case where the two normal
distributions N 1 and N 2 are identical.

5.2.1 Initialization

The patch clustering algorithm begins by instantiating a

surface si for every patch �i containing only the patch �i.

A surface is defined as a higher level geometric element that

can contain multiple patches. Similarly to the pdfs described

previously for the patches��i , a surface has a pdf�si modeled
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Fig. 5. (a) Points are color coded according to the patch they belong to.
In this case, the total number of patches is 22,972. Processing time:
413 seconds. (b) Patches are color coded according to the surface they
belong to. The number of surfaces after two iterations of similarity
merging is 15,815 and after three iterations of the small surface merging
is 5,300. Processing time: 182 (first step) + 156 (second step) seconds.
(� ¼ 1:0, 
 ¼ 0:75). (c) The patch clustering graph showing the surface
reduction during the merging process.



by a six-dimensional Gaussian function �si ¼ N sið ~��i ;��iÞ.
At the time of the instantiation, the normal distribution N �i

of the contained patch is used to initialize the normal
distribution N si of the newly created surface.

5.2.2 Iterative Processing

The algorithm then proceeds by comparing neighboring
surfaces. Two neighboring surfaces s1 and s2 are merged if
the separability measure dbhatðN s1;N s2Þ between their two
normal distributions is below an empirically defined value

 , in which case:

1. the patches contained in s2 are added to the patches
contained in s1,

2. the surface s2 is removed from further processing, and
3. the pdf �s1

is updated to reflect the combination of
N s1

and N s2
by refitting to the union of the tuples (1)

contained in the two N s1;N s2.

Alternatively, in the case where two neighboring
surfaces are not similar (i.e., have a separability measure
greater than 
), the algorithm continues to the next
neighboring surfaces. This process is iteratively repeated
until all neighboring surfaces are checked and no further
merging occurs.

Finally, a second application of the same process is
performed for surfaces containing a small number of points
(i.e., less than 10). These small surfaces are merged to the
neighboring surface with the highest matching score
determined by the Bhattacharyya distance dbhat.

The result is a set of surfaces, each containing one or more
patches exhibiting similar geometric properties. The com-
putational complexity of this step is OðNÞ in the best-case

scenario and OðNðM � 1Þ in the worst-case scenario, where
N is the number of surfaces and M the number of neighbors
of a surface. The results of the patch clustering applied to the
patches of Fig. 5a are shown in Fig. 5b. Fig. 5c shows
the reduction in the number of surfaces at each iteration of
the algorithm. As explained earlier, the initial number of
surfaces equals the number of patches resulting from the
point clustering.

The proposed clustering algorithm results in high-
accuracy results and does not remove details by clustering
them together. This is demonstrated by the example in
Fig. 6a. The reconstructed building is automatically recon-
structed based on the clusters extracted shown in Fig. 6c. A
closeup from a satellite image available from Bing Maps is
shown in Fig. 6b [15].

6 BOUNDARY EXTRACTION AND REFINEMENT

Next, for all the resulting surfaces, their boundaries are
extracted using the Suzuki and Abe [16] contour finding
algorithm. The result is a set of exterior boundaries
corresponding to each surface.

A common problem that arises when dealing with point
cloud data is its representation of linear elements in the
scene. In particular, when dealing with airborne LiDAR
sensors, linear elements are captured as stepwise linear, i.e.,
“zig-zag,” as shown in Fig. 7a. This is primarily due to the
light beams emitted by the sensor in a zig-zag fashion as
well as the sweeping motion of the airborne sensor. Fig. 7b
shows the result of boundary extraction for a surface. To
overcome this problem, we propose a novel boundary
refinement process. Uniquely, the proposed boundary
refinement process leverages the strengths of Gaussian
mixture models (GMMs) for the boundary orientation
extraction and classification and the global energy optimi-
zation using graph cuts for the boundary classification
refinement as explained in the following Section 6.1.

6.1 Boundary Refinement

The boundary refinement process consists of three steps:

. orientation extraction and classification, described in
Section 6.1.1,

. orientation classification refinement, described in
Section 6.1.2,

. adjustment of the boundary points, described in
Section 6.1.3.
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Fig. 6. (a) An automatically reconstructed building using the proposed
algorithm. (b) A closeup from a satellite image available from Bing maps
[15]. (c) The color-coded result of the P2C algorithm corresponding to
the reconstructed building in (a). Note: The color codes are repeated,
i.e., the building and ground are two different clusters that were labeled
with the same color-code. Similarly, one of the air conditioners on the
roof of the building can be seen in the reconstructed building.

Fig. 7. (a) The “zig-zag” effects caused by the scanning process marked
with white rectangles. (b) Boundaries extracted for a small area using
Suzuki’s algorithm [16].



6.1.1 Orientation Extraction and Classification

Buildings vary widely in terms of the orientations they may
contain. For example, simple buildings can have two
orientations, i.e., box shaped, whereas complex buildings
can have several more orientations. Thus, to determine the
shape of a building, we first need to extract and classify the
orientations it contains.

First, for each surface, the local tangent at each boundary
point PB

i is calculated as ~tPB
i
¼ hPB

iþ1 � PB
i�1i. The local

tangents are then modeled by a GMM, a superposition of
several two-dimensional N Gaussian densities of the form

pðxÞ ¼
XN
i¼1

�iNðx j �i;�iÞ; ð6Þ

where each component of the mixture Nðx j �i;�iÞ has
mean �i and covariance matrix �i. The parameters �i are
the mixing coefficients for which the following conditions
hold:

�i � 0 and
XN
i¼1

�i ¼ 1: ð7Þ

The calculation of the parameters ���� ¼ f�1; . . . ; �Ng, ���� ¼
f�1; . . . ; �Ng, and � ¼ f�1; . . . ;�Ng is performed using an
expectation maximization (EM) algorithm that maximizes
the log of the likelihood function given by

ln pðX j ����; ����;�Þ ¼
XM
j¼1

ln
XN
i¼1

�iNðxj j ����i;�i

( )
; ð8Þ

where X ¼ fx1; . . . ; xMg are the data samples, i.e., the
local tangents.

In many cases, assumptions are made for possible
structural symmetries in the building [4]. In contrast to
existing work, we do not assume that buildings always
exhibit structural symmetries or have specific number of
sides; therefore, we do not use a fixed N-order GMM, but
instead N is computed using a minimum description length
estimator criterion proposed by [17]. Hence, for each
boundary of a surface, we first determine the best number
of components the GMM should have and then perform the
fitting using the EM algorithm to minimize (8).

This process is applied on all surfaces and results in a set
of orientations represented by the means �i of the Gaussian
components in (8). An example is shown in Fig. 8a. The
extracted boundaries are shown in Fig. 8b, and the
orientations extracted for each boundary point are shown
in Fig. 8c. In this example, the GMM consists of six Gaussian
components whose information is shown in Fig. 8d. As is
evident, the number of orientations extracted are far more
than the actual number of two dominant orientations due to
the noise in the data.

6.1.2 Orientation Classification Refinement

The extracted orientations contain a combination of domi-
nant orientations, i.e., whose mixing coefficients �i in (6) are
large, and other not so dominant orientations. The next step is
to refine the classification of boundary points such that they
will be classified according to one of the extracted orienta-
tions while ensuring that only the dominant orientations

are considered. To achieve this, we perform an energy
minimization using graph cuts [1].

Graph cuts: Given an input binary image I containing the
boundary points of each surface, an undirected graph G ¼
<V ;E> is created, where each vertex vi 2 V corresponds to
a boundary point PB

i 2 I and each undirected edge ei;j 2 E
represents a link between neighboring boundary point
PB
i ; P

B
j 2 I. In addition, two distinguished vertices called

terminals Vs and Vt are added to the graph G. An additional
edge is also created connecting every boundary point PB

i 2
I and the two terminal vertices, ei;Vs and ei;Vt . For weighted
graphs, every edge e 2 E has an associated weight we. A cut
C � E is a partition of the vertices V of the graph G into two
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Fig. 8. (a) A surface representing a building. (b) The boundaries
extracted using Suzuki’s algorithm [16]. (c) The boundary point
orientations extracted using GMM. Each boundary point is color coded
according to the maximum probability of the Gaussian component in the
GMM. In this example, the GMM consists of six Gaussian components
shown in Fig. 8d. (d) The Gaussian components contained in the GMM
for the example in (c). Each component is color coded to correspond to
the colors in (c).



disjoint sets S and T , where Vs 2 S and Vt 2 T . The cost of
each cut C is the sum of the weighted edges e 2 C and is
given by

jCj ¼
X
8e2C

we:

The minimum cut problem can then be defined as finding
the cut with the minimum cost.

Labels: The binary case explained above can easily be
extended to a case of multiple terminal vertices. We create
two terminal vertices for each extracted orientation ~ti ¼ �i
corresponding to each Gaussian density in (6). Thus, the set
of labels L has size jLj ¼ N and is defined to be
L ¼ f~t1; ~t2; . . . ; ~tNg. Our experiments have shown that the
number of labels is, on average, jLj ¼ ½5� 10�.

Energy minimization function: Finding the minimum cut of
a graph is equivalent to finding an optimal labeling f :
IPB

i
�! L which assigns a label l 2 L to each boundary

point PB
i 2 I, where f is piecewise smooth and consistent

with the original data. Thus, our energy function for the
graph-cut minimization is given by

EðfÞ ¼ EdataðfÞ þ �1 � EsmoothðfÞ þ �2 � ElabelðfÞ; ð9Þ

where �1 is the weight of the smoothness term and �2 the
weight of the label term.

Data term: The data term provides a per-point measure of
how appropriate a label l 2 L is for a boundary point PB

i 2
I in the observed data and is given by

EdataðfÞ ¼
X
PB
i 2I

DPB
i
ðfÞ: ð10Þ

We define DPB
i
ðfÞ for a boundary point PB

i as the
difference between the existing label ~tPB

i
, i.e., the local

tangent at the boundary point PB
i , and a new label fðPB

i Þ 2
L and is given by

DPB
i

�
f
�
PB
i

��
¼
�� ~tPB

i
� ~f
�
PB
i

���: ð11Þ

Therefore, the energy data term becomes

EdataðfÞ ¼
X
PB
i 2I

��� ~tPB
i
� ~f
�
PB
i

����: ð12Þ

Smoothness term: The smoothness term provides a

measure of the difference between two neighboring bound-

ary points PB
i ; P

B
j 2 I with labels ~li;~lj 2 L, respectively. Let

~tPB
i

and ~tPB
j

be the initial orientations of the neighboring

boundary points in the observed data PB
i ; P

B
j 2 I, respec-

tively. We define a prior measure of the observed smoothness

between boundary points PB
i and PB

j as

�ðPB
i ;P

B
j Þ ¼

�� ~tPB
i
� ~tPB

j

��: ð13Þ

Equation (13) favors neighboring boundary points with

similar orientations and penalizes otherwise.
In addition, we define a measure of smoothness for the

global minimization. Let ~li ¼ ~fðPB
i Þ and ~lj ¼ ~fðPB

j Þ be the

orientations under a labeling f . We define a measure of

the smoothness between neighboring pixels PB
i and PB

j

under a labeling f as

~�ðPB
i ;P

B
j Þ ¼ j

~li �~ljj: ð14Þ

Using the smoothness prior defined for the observed

data (13) and the smoothness measure defined for any

labeling f (14), we can finally define the energy smoothness

term as follows:
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Fig. 9. (a) Minimization without label costs. All six orientation labels are retained. (b) Minimization with label costs. Only two orientation labels are
retained, corresponding to the two dominant orientations of the building. Boundary points are shown in purple and are connected with yellow lines.
(c) The labeling of the boundary points is produced by graph cuts using label costs. The dominant orientations correspond to the Gaussian
components 1 and 5 of Fig. 8d. The weight k1 in (9) was the same for both cases.

Fig. 10. Boundary refinement for surface with multiple dominant
orientations from dataset A.



EsmoothðfÞ ¼
X

ðPB
i ;P

B
j Þ2T

VPB
i ;P

B
j

�
f
�
PB
i

�
; f
�
PB
j

��
ð15Þ

EsmoothðfÞ ¼
X

ðPB
i
;PB
j
Þ2T

� ffiffiffi
2
p
� e�

�ðPB
i
;PB
j
Þ
2

2��2

�
� ~�ðPB

i ;P
B
j Þ ð16Þ

EsmoothðfÞ ¼
X

ðPB
i ;P

B
j Þ2T

KðPB
i ;P

B
j Þ �

~�ðPB
i ;P

B
j Þ; ð17Þ

where T is the set of neighboring boundary points,

KðPB
i ;P

B
j Þ ¼

ffiffiffi
2
p
�
�
e�

�ðPB
i
;PB
j
Þ
2

2��2

�
;
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Fig. 11. (a), (d), (g), (j), (m) Point clustering. (b), (e), (h), (k), (n) Patch clustering. (c), (f), (i), (o) Boundary extraction and refinement. Boundaries are
annotated in red color. Zoom in for detail.



and � controls the smoothness uncertainty. Intuitively, if

two neighboring boundary points PB
i and PB

j have similar

orientation in the observed data, then �ðPB
i ;P

B
j Þ will be

small, and thus there is a higher probability of ~�ðPB
i ;P

B
j Þ

being small.
Label term: The label term penalizes each unique label

that appears under a labeling f [1]. We define the label term
as follows:

ElabelðfÞ ¼
X
~l2L

h~l:�~lðfÞ; ð18Þ

where hl is a nonnegative label cost of label~l and is given by

h~l ¼ ð1� �~lÞ
2 (where �~l is the mixing coefficient of the

Gaussian density whose mean equals to~l in (6)) and �~lðfÞ is

a function that indicates whether a label is unique under a

labeling f and is given by

�~lðfÞ ¼
1; 9PB

i : fðPB
i Þ ¼~l

0; otherwise:

�
ð19Þ

Intuitively, the label term penalizes heavily when there exist
unique labels that correspond to a Gaussian density in (6)
with a high mixing coefficient, i.e., a likely dominant
orientation, and otherwise if the unique labels correspond
to a nondominant orientation.

The energy function EðfÞ heavily penalizes for severed

edges between neighboring boundary point with similar

orientation, and vice versa, which results in better defined

boundaries. Moreover, it heavily penalizes any unique

labels that have not been assigned to any boundary point,

thus eliminating the nondominant orientations, as we

demonstrate in Section 7.
Energy minimization using graph cuts: The energy mini-

mization is performed using the 
-expansion algorithm.

For each iteration, the algorithm selects an orientation

label 
 2 L, and then finds the best configuration within

this 
-expansion move. If the new configuration reduces

the overall energy EðfÞ in (9), the process is repeated. The

algorithm stops if there is no 
 that decreases the energy.

The 
 expansion algorithm requires that the user-defined

energy be regular and thus graph representable [18].

Kolmogorov also proves that any class F 2 functions of one

variable are regular; hence, the label term ElabelðfÞ in (18)

is regular. Moreover, the data term EdataðfÞ in (12) is

regular since the following is true:

Ei;jð0; 0Þ þEi;jð1; 1Þ 	 Ei;jð0; 1Þ þEi;jð1; 0Þ: ð20Þ

To prove that the remaining smoothness term is regular, it
suffices to show that the interaction potential V is a metric.
V is a metric if for any pair of labels 
; �; � 2 L satisfies the
following three conditions:

1. V ð
; �Þ ¼ 0, 
 ¼ �.
2. V ð
; �Þ ¼ V ð�; 
Þ � 0.
3. V ð
; �Þ 	 V ð
; �Þ þ V ð�; �Þ.
The first two conditions are trivially true. The third

condition can be proven as follows for any pair of neighbors
p and q and labels ~
; ~�;~� 2 L:

Vp;qð~
;~�Þ þ Vp;qð~�; ~�Þ � Vp;qð~
; ~�Þ ¼ ð22Þ

Kp;qfj~
�~�j þ j~� � ~�j � j~
� ~�jg: ð22Þ

~
�~�, ~� � ~�, and ~
� ~� are three vectors lying on the same
plane, forming a triangle. By the triangle inequality theorem
that states that for any triangle the sum of the lengths of any
two sides must be greater than or equal to the length of the
remaining side, the third condition must hold.

Thus, the user-defined energy EðfÞ in (9) is regular
and can be minimized by the 
-expansion algorithm in
�ðLÞ time.

Fig. 9a shows the result of energy minimization without
the use of label costs. In this case, all six initial labels shown
in Fig. 8d are retained. Fig. 9b shows the result of energy
minimization using label costs. In this case, only the two
labels were retained corresponding to the two dominant
orientations of the building. In this example, the dense
boundary points resulting from the minimization are
simplified using Douglas-Peucker approximation with
error tolerance equal to zero, i.e., only colinear points are
removed. Fig. 9c shows the new labeling resulting from
graph cuts using label costs.

A more complicated example is shown in Fig. 10. This
corresponds to a surface in dataset A. In this case, the energy
minimization resulted in five different dominant orienta-
tions. The final boundaries are annotated on the image;
points are purple and the lines connecting them are yellow.

6.1.3 Boundary Adjustment

The result of the boundary refinement is a classification of
the boundary points with the minimal set of dominant
orientations corresponding to each surface. Next, the
boundary points are adjusted by projecting the x and y
components of each of the 3D points onto their assigned
orientation.
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TABLE 1
Processing Times for Dataset A

Time format used is hh:mm::ss. Phase 2 is point clustering, Phase 3 is
patch clustering, and Phase 4 is boundary extraction and refinement.

TABLE 2
Final Resolution, Number of Patches and Surfaces,

Fitting Error for Each Subcube of Dataset A, and
Average Error per Surface Measured in Meters



7 EXPERIMENTAL RESULTS

The proposed framework has been extensively tested on
several datasets, and the results are reported. All results
reported were conducted on an quad-core Athlon Phenom
processor with 4-Gbytes RAM with the only two user-
defined parameters set as � ¼ 1:0 and 
 ¼ 0:75. The
parameters remain unchanged for all datasets shown.

Fig. 2 shows Data set A for a US City. The dataset
consists of about 120 million points and contains urban as
well as some rural areas. During the data preparation
phase of structuring and subdivision, five subcubes were
generated. Each column in Fig. 11 shows the point
clustering, patch clustering, and boundary extraction, and
refinement results for each of the subcubes, respectively.
The time performances for each of the subcubes are shown
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Fig. 12. (a) Renders of the 3D models corresponding to dataset A. (b)-(e) Textured 3D models of the area in (a).



in Table 1. Similarly, the statistics for each of the subcubes
are shown in Table 2. Phase 1 is the data preparation that
completed in 00:05:45.

As can be seen from the reported times, the automatic
modeling of the complete dataset A takes 06:46:21 to
conclude if processed sequentially. However, as mentioned
before, each subcube can be processed independently since
no information sharing is needed between the subcubes.
This allows for the parallel processing of the subcubes that
can dramatically reduce the processing time down to
03:04:05, i.e., the processing time of the slowest subcube.

Fig. 12a shows the generated 3D models for dataset A
and Figs. 10b, 10c, 10d, and 10e show the renders from
novel viewpoints of the same 3D models being textured
with satellite and aerial photographs. The proposed frame-
work does not differentiate between different types of areas
such as ground, trees, buildings, and so on. This, however,
does not affect the accuracy of the results, as can be seen in
Fig. 13, where 3D models can be seen corresponding to trees
in the data in the form of cylinders.

The generated models for dataset C are shown in Fig. 14.
Dataset C contains about 20 million points, and the actual
size of the area it covers is about 15 km2. During the data
preparation phase, 20 subcubes were produced with initial
maximum resolution of 1K� 1K� 1K.

8 EVALUATION

Finding ground truth (i.e., building blueprints) for such
large-scale datasets is extremely difficult if not impossible.
This makes the evaluation of the automatic modeling rather
difficult. However, some qualitative and quantitative mea-
sures have been proposed for the evaluation of such results:

. Quality. A qualitative measure that involves the
visual inspection of the resulting 3D models for
imperfections such as misalignments between neigh-
boring surfaces or any other erroneous artifacts.

. Accuracy. A quantitative measure that measures
the deviation from the original data. We measure
correctness as the root-mean-square (RMS) of the
surface fitting error. The error for each subcube for
dataset A is given in Table 2 and is defined as the sum
of the RMS of each surface fitting. The fitting error for
each surface is measured as the distance of the
scanned surface points to the reconstructed surface.

. Scalability. A quantitative measure indicating how
time varies depending on the number of points in
the dataset. As mentioned in Section 5.2.2, the
processing time depends on the number of points.
Moreover, the experiments have shown that there is
a slight delay in processing whenever there is a
relatively large surface, i.e., more than 20K points,
which is usually the case for the ground surface. This
is due to the fact that whenever a merge of two
surfaces occurs, a new normal distribution has to be
computed containing all the points of the two
surfaces. The processing times for dataset A are
shown in Table 1.

. Compression. A quantitative measure indicating the
compression achieved compared to the original size
of the data. This measure is a very significant since if
a considerable compression is achieved, it enables
the use of the resulting models in a wide range of
applications including computationally intensive
applications such as dynamic simulations, and so
on. The compression rates achieved for all datasets
are well above 90 percent for all reported datasets in
terms of resulting number of faces.

9 CONCLUSION

The proposed framework provides a complete alternative to
existing interactive parameterized systems because it allows

for rapid but, more importantly, automatic modeling from

point cloud data. We have presented a novel unsupervised
clustering algorithm P2C for the separation of the dataset

into clusters of similar points. This is achieved by a
hierarchical statistical analysis of the geometric properties

of the points, and the results shown indicate its robustness
and accuracy. Moreover, P2C has only two user-defined

parameters (� and 
) that are found to be very stable and in

fact have remained unchanged for all reported results. In
addition, we have presented a novel and fast boundary

refinement process for the extraction, orientation classifica-
tion, and orientation refinement of boundary points, where

we leverage the strengths of variable-sized GMMs and the

efficient energy minimization by graph cuts. The number of
Gaussian components is adaptively computed based on

Rissanen’s criterion, and finally, only the labels correspond-
ing to the dominant orientations are kept using energy

minimization by graph cuts with incorporated label costs.
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Fig. 13. Models are created for all surfaces. Fig. 14. Generated models for dataset C.



As shown, this results in smoother boundaries in the final

3D models.
In the future, we would like to focus on the improvement

of the framework and, in particular, the generation of the

3D models. Currently, the 3D models are extruded based on

the refined and smooth boundaries. We would like to

explore the possibility of using shape matching to detect the

shape of the complete building rather than just surfaces

without loss of generality. Moreover, we would like to

improve the boundary refinement process such that it

handles nonlinear boundaries separately and not as piece-

wise linear.
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