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Abstract—Accurate and efficient methods for large-scale urban reconstruction are of significant importance to the computer vision and
computer graphics communities. Although rapid acquisition techniques such as airborne LiDAR have been around for many years,
creating a useful and functional virtual environment from such data remains difficult and labor intensive. This is due largely to the
necessity in present solutions for data dependent user defined parameters. In this paper we present a new solution for automatically
converting large LiDAR data pointcloud into simplified polygonal 3D models. The data is first divided into smaller components which
are processed independently and concurrently to extract various metrics about the points. Next, the extracted information is converted
into tensors. A robust agglomerate clustering algorithm is proposed to segment the tensors into clusters representing geospatial
objects e.g. roads, buildings, etc. Unlike previous methods, the proposed tensor clustering process has no data dependencies and
does not require any user-defined parameter. The required parameters are adaptively computed assuming a Weibull distribution for
similarity distances. Lastly, to extract boundaries from the clusters a new multi-stage boundary refinement process is developed by
reformulating this extraction as a global optimization problem. We have extensively tested our methods on several pointcloud datasets
of different resolutions which exhibit significant variability in geospatial characteristics e.g. ground surface inclination, building density,
etc and the results are reported. The source code for both tensor clustering and global boundary refinement will be made publicly
available with the publication.

Index Terms—pointcloud tensor field, parameter-free clustering, LiDAR reconstruction, boundary refinement
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1 INTRODUCTION

1 LARGE-scale urban reconstruction has long been of great2

interest and significant importance to the computer3

vision and computer graphics communities. Specifically,4

following the recent advances in virtual and augmented5

reality technologies there has been an increasing demand6

for robust and efficient methods for generating these vir-7

tual environments. Rapid acquisition techniques such as8

airborne LiDAR have been around for many years and are9

indeed capable of capturing very large areas in a single10

deployment however the difficulties arising with processing11

the captured data considerably limit their uses. For one,12

as with every scanning, noise is introduced in the mea-13

surements due to possible system error or sensor miscal-14

ibration. In addition, the zig-zag nature of the scanning15

almost always produces spurious measurements at object16

boundaries which manifest themselves as jagged edges in17

the data. Another significant limiting factor is the resolution18

or sampling density of the captured data which depends on19

the sampling rate of the LiDAR sensor as well as the flying20

altitude of the aircraft as explained in [14].21

Even with the tremendous advances in remote sensing22

technologies given the above mentioned capture charac-23

teristics, processes in current practice still require trained24

personnel with extensive experience in order to produce25

models useful in the end application, i.e. lightweight, polyg-26

onal 3D models. The process is expensive since it requires27

manual or at best semi-automatic work, and is human effort28

• C. Poullis is the Director of the Immersive and Creative Technologies
Lab at the Department of Computer Science and Software Engineering,
Concodia University, Montreal, Quebec, Canada.
E-mail: charalambos@poullis.org - see http://www.poullis.org

Manuscript received April 19, 2005; revised August 26, 2015.

intensive and slow. A primary cause for this is the fact 1

that existing state-of-the-art systems for large-scale urban 2

reconstruction require a plethora of parameters [e.g. number 3

of user-defined non-adaptive parameters in ([10] ' 15, [22] 4

' 12) which have to be carefully tweaked by the user since 5

these often depend on the input data characteristics. This 6

sensitivity to the input data and the large choice of multiple 7

parameters are always major concerns in the application 8

of these methods in practice. Their optimal values are not 9

known and cannot be easily computed either. This makes it 10

necessary for the user/operator to experimentally search in 11

this large parameter space for values that yield the desired 12

quality of 3D models, resulting in making this process so 13

difficult and time consuming. Another serious limitation 14

with existing solutions is scalability; primarily in terms of 15

the size of area which can be successfully processed and 16

secondly, in terms of performance i.e. how long it takes to 17

generate the results. 18

To summarize, there still exists a wide gap between the 19

current state-of-the-art and the desired goal of automated 20

large-scale urban reconstruction of real-world areas, for 21

applications requiring digital 3D environments. 22

In this paper we address the difficult problem of large- 23

scale urban reconstruction and propose a novel and au- 24

tomatic solution for generating simplified, polygonal 3D 25

models. The proposed technique takes as input the raw, 26

unstructured, incomplete, and noisy pointcloud captured by 27

an airborne LiDAR scanner during multiple sweeps, and 28

first separates it into a set of smaller components. Each 29

component is a resampled XYZ map containing a different 30

part of the data as in [14] which is then processed inde- 31

pendently and concurrently to extract various metrics about 32

the points in the maps. This technique adaptively calculates 33
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the number of XYZ maps according to the user-suggested1

map resolution. Next, information extracted directly from2

this data is encoded using a tensorial representation. This3

representation allows multiple types of information about4

each point to be encoded at the same time. A robust ten-5

sor clustering algorithm is proposed for segmenting the6

tensors into clusters representing geospatial objects such as7

buildings, cars, trees, etc. Most significantly, our clustering8

method has no input data dependencies and does not re-9

quire any user defined parameter making it distinct from10

earlier solutions for this problem. It is based on adaptive11

computation of the statistical parameters of the underlying12

distribution for points belonging to a cluster. The result of13

the clustering is a set of contiguous clusters of points which14

are further processed in order to extract the boundaries.15

This is achieved with a new multi-stage boundary extraction16

and refinement process which reformulates the boundary17

extraction as a global optimization problem. Unlike existing18

work, our proposed technique requires no user interaction,19

makes no assumptions on the input data, such as requir-20

ing Manhattan-style building orientations, and is able to21

process the entire data without any user inputs, i.e. does22

not require like in earlier work that the user accurately23

marks the boundaries of every single building before re-24

constructing it. Our technique has been extensively tested25

on five different datasets of different resolutions/densities26

which have significant variability in the ground surface27

elevation/inclination, building density, type, etc.28

The rest of the paper is organized as follows: Section 229

provides a brief overview of the state-of-the-art in the area30

of large-scale reconstruction. In Section 3 we provide a tech-31

nical overview of the proposed solution. The extraction of32

the information from the pointcloud data and its encoding33

to tensors is presented in Section 4. In Section 5 we present34

Tensor Clustering and in Section 6 the global boundary35

refinement. Section 7 reports on experimental results and36

evaluation, and lastly, Section 8 has the conclusion and37

future work.38

2 RELATED WORK39

Many algorithms and systems have already been proposed40

for the problem of urban reconstruction by researchers in41

computer vision and graphics communities. A comprehn-42

sive summary can be found in [13]. The most relevant to43

the proposed work are categorized according to the line of44

approach they followed and summarized below.45

First, there are techniques which use geometric primi-46

tives. In [17] the authors proposed a system which included47

a minimal set of three parameterized-primitives which the48

operator could use to model any type of linear and non-49

linear surfaces. Fast forward to the current state-of-the-art,50

there are techniques [8] and [7] which given a set of points51

automatically produce a set of primitives describing the site.52

However, these approaches require that the input points53

correspond only to a single building. In fact, one of the54

most difficult tasks of reconstructing large urban areas is55

the automatic detection of buildings and other components.56

Which is why, these approaches combine manual detection57

with automatic extraction.58

A different line of approach uses symmetries and reg- 1

ularities. Extensive work using this approach has already 2

been done and has shown to yield impressive results, but 3

mostly for small scale objects [12]. In [21] this same approach 4

is used to propose a system for urban reconstruction. How- 5

ever, again, solutions based on this approach require that 6

the detection is performed manually. 7

Finally, a rather different approach by [20] used inverse 8

constructive solid geometry techniques. Rather than using 9

boolean operations on simple primitives to generate a com- 10

plex structure, they start off with a point cloud representing 11

the indoor area of a structure and decompose that into layers 12

which are then grouped into higher-order elements. 13

Perhaps the closest work related to the proposed tensor 14

clustering is the work of [15] on multi-type feature extrac- 15

tor and classifier. Information extracted from color satellite 16

images is represented using tensors. Next, the tensors are 17

decomposed and pixels are classified as junctions, curves 18

or surfaces via graph-cut optimization. In our work, we 19

employ 3D data and propose a different way to encode 20

extracted information into tensors. Furthermore, there is no 21

classification but instead all comparisons are performed in 22

terms of the tensorial representation of each point. 23

In summary, previous solutions require extensive user 24

input, in the form of manual identification of components 25

in the urban area and/or in the form many threshold 26

values to be tweaked on a case by case basis. As a result, 27

these solutions do not scale well to large urban areas. In 28

contrast to the above work, in this paper, we present an 29

automatic urban reconstruction system which requires no 30

user interaction, and yet efficiently generates accurate urban 31

reconstructions. Our technical contributions are: 32

• An elegant representation of all the multiple informa- 33

tion at each point in a LiDAR depth map encoded in 34

the form of a single-second order symmetric tensor. 35

The tensor encapsulates into it the property of a 36

point belonging to the surface, curve and junction 37

categories without the need for various user specified 38

thresholds. This formulation which fuses per point 39

information into a single entity leads to considerable 40

simplification of the similarity comparison between 41

points. 42

• A robust clustering technique for depth maps cap- 43

tured by LiDAR scanners which retains important 44

details without the need for user defined thresholds 45

and yields better results than earlier solutions. 46

• An innovative method of computing the parameters 47

needed for region growing to group points into 48

clusters based on adaptive computation of per-point 49

and per-cluster statistical parameters. The Weibull 50

probability distribution function (pdf) is assumed for 51

points within a cluster. The Weibull pdf parameters 52

are dynamically updated as new points get added 53

to the cluster. The clustering results achieved are 54

superior to previous results. 55

• A new multi-stage method of boundary extraction 56

and refinement which reformulates this as a solution 57

to a global optimization problem. 58
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3 TECHNICAL OVERVIEW1

Our solution involves the clustering first, followed by the2

boundary extraction. An overview of the proposed clus-3

tering technique is shown in Figure 1. The LiDAR data is4

essentially an XYZ map consisting of 3D points. A crucial5

step in the 3D reconstruction using this data is to seg-6

ment these points into surface patches and boundary curve7

segments. For this, firstly, a set of per-point metrics are8

computed from the input XYZ map and these are encoded9

into tensors. The per-point metrics include, the normal,10

height, local height variation and local normal variation. In11

addition, edge saliency is computed for multiple directions12

using multi-scale, multi-frequency filtering with Gabor jets.13

The encoding into the tensorial representation is based on14

the following reasoning. Surfaces should have low/constant15

height variation and low/constant normal variation and16

low curve response, while curves should have high height17

variation and high normal variation and high curve re-18

sponse.This formulation is presented in Section 4. The ten-19

sors are then clustered together based on their similarity.20

This clustering is presented in Section 5. The method for21

adaptive computation of per-point and per-cluster statistics22

used in region growing for cluster formation is discussed23

in 5.3 using a Weibull distribution of the points. Lastly,24

given a set of observations/samples, the estimation of the25

shape α and scale β parameters of the Weibull distribution26

is performed using Maximum-Likelihood Estimation and27

described in detail in the Appendix.28

Fig. 1: An overview of the proposed clustering technique.

The clusters are then further processed to extract region29

boundaries. The pipeline for the boundary extraction and30

refinement process is shown in Figure 2. Firstly, the clusters’31

boundaries are extracted and grouped into neighbourhoods32

as described in Section 6.2. Next, the dominant orientations33

of each cluster are computed using Principal Component34

Analysis (PCA) and are used to compute the globally domi- 1

nant orientations for the entire scene. To avoid assumptions 2

on the number and type of orientations we employ Gaussian 3

Mixture Models (GMMs) and use a Minimum Description 4

Length (MDL) criterion to specify the number of Gaussian 5

components. The boundaries are then refined based on the 6

globally dominant orientations and a global optimization 7

step which ensures that the boundary positions are optimal 8

as described in Section 6.3. 9

Finally, simplified, polygonal 3D models are created 10

from the boundaries. 11

4 ENCODING USING THE TENSORIAL REPRESEN- 12

TATION 13

The XYZ map contains points in 3D Euclidean space. The
objective of this phase is the clustering of similar neighbour-
ing points. As has been current practice, this has involved
computing of various metrics at each point in order to deter-
mine the similarity between them. Typically, these metrics
can be derived directly from the XYZ map containing the
points and many have already been reported: height h,
normal ~N , surface fitness error, height variation, normal
variation, etc. Once the metrics have been computed the
decision whether two points P1 and P2 are similar or not
is expressed as either a combination Dcomponent−wise of the
results of the per-metric comparisons:

Dcomponent−wise = dh(HP 1 , HP 2) < τH
∧

dN (NP 1 , NP 2) < τN
∧
... (1)

or as Dcombined the result of a single comparison be- 14

tween two N-dimensional feature descriptors fP1
=< 15

HP 1 , NP 1 , ... > and fP2
=< HP 2 , NP 2 , ... > containing the 16

N metrics at each point: 17

Dcombined = df (fP1 , fP2) < (τH , τN , ...) (2)

where dh, dN , df are distance functions for the height, nor- 18

mal, and feature descriptors respectively. 19

In either case, there is an explicit requirement that a 20

set of thresholds τH , τN , ... is specified which renders most 21

proposed techniques dependent both on the dataset and 22

also on the user to provide the right values for each of the 23

thresholds. Further, this requirement implies the inherent 24

assumption that the linear hyper-plane defined by the spec- 25

ified thresholds divides the N-dimensional feature space 26

into two parts where all points lying above the hyper-plane 27

are similar and all below are not similar. Although for low 28

dimensional feature spaces this may often be true, when 29

dealing with higher dimensions this does not hold and can 30

negatively impact the accuracy of the results. 31

In this work, we eliminate the above requirement and in- 32

stead propose a third option: combine the metrics computed 33

at each point into a single entity: a second-order symmetric 34

tensor. This choice was based on the fact that a second-order 35

symmetric tensor can encode information about multiple 36

geometric types passing through each point and therefore 37

can encode all the information extracted by the metrics. 38

More importantly, it enables us to present a solution which 39

does not require the user to guess even a single threshold 40

value for it to function. 41



C. POULLIS: LARGE-SCALE URBAN RECONSTRUCTION WITH TENSOR CLUSTERING AND GLOBAL BOUNDARY REFINEMENT 4

Fig. 2: An overview of the proposed boundary refinement technique.

In the following section we describe the steps required1

to extract and encode the information into tensors. First,2

we begin by computing several per-point metrics from the3

input XYZ map required for subsequent processing. This4

is described in Section 4.1. Next, the metrics are encoded5

into tensors and a tensor field representing the 3D scene6

is computed. This is explained in Section 4.2. Finally, the7

information encoded in the tensors is used for clustering8

the points into surface patches and boundary lines.9

4.1 Per-point Metrics10

In order to proceed with the classification, the following11

per-point metrics are first computed using the XYZ map12

containing the points in raster form:13

• Normal computation. By taking into account the14

local 8-neighbourhood at each point P , a normal ~NP15

is defined as the mean of the eight neighbouring16

normals. In our experiments the neighbourhood is17

defined as the 3 × 3 neighbouring points around18

point P since it provides the fastest and best results.19

The neighbouring normals are computed as the cross20

product of two vectors formed by connecting con-21

secutive neighbouring points Pi, P(i+1) mod 8, where22

0 ≤ i ≤ 8, to point P and is given by,23

~NPi,(i+1) mod 8
= ~(Pi − P )× ~(P(i+1) mod 8 − P ).24

Hence, the normal at point P is defined as25

~NP = 1
8

∑8
i=0(NP(i,(i+1) mod 8)

)26

• Height variation. The height variation is defined as27

the local neighbourhood height variation of point P28

and is given by,29

HP
var =

||hP − hmin||
(hmax − hmin)

(3)

where hP is the height at point P , and hmin, hmax30

are the minimum and maximum heights in the31

neighbourhood, respectively. In our experiments the32

neighbourhood is defined as the 7× 7 neighbouring33

points around point P .34

• Normal variation. Similar to the height variation, the35

normal variation is defined as the local neighbour-36

hood normal variation of point P and is given by,37

38

NP
var = ||ndmax − ndmin|| (4)

where ndmax = 1 − dmax and ndmin = 1 − dmin.39

dmax and dmin are the maximum and minimum40

dot products respectively, between vectors formed41

by connecting consecutive neighbouring points to42

point P . For example, the NP
var at point P located43

in a neighbourhood where all points have similar(or44

equal) normal orientation will have a value closer (or45

equal) to zero.46

• Gabor response. A bank of Gabor jets is applied 1

on the input XYZ map at different frequencies (i.e. 2

ℵf = 5) and orientations (i.e. ℵΘ = 16). Since 3

the XYZ maps are essentially depth maps (with X,Y 4

coordinates) the Gabor jets respond to oriented depth 5

discontinuities. The resulting response rθP at each 6

point P corresponding to the same orientation θ 7

but different frequencies are added together to form 8

a per-orientation response image. The combination 9

of the multiple-scales per orientation accounts for 10

features appearing at different scales. 11

The metricsHP
var, N

P
var and rθP are normalized and range 12

between [0, 1]. 13

4.2 Tensor field computation 14

The per-point metrics described in Section 4.1 are encoded 15

into a second-order symmetric tensor TP for each point 16

P . A second-order symmetric tensor T is defined as T = 17

λ1~e1~e
T
1 + λ2~e2~e

T
2 + λ3~e3~e

T
3 where λ1 ≥ λ2 ≥ λ3 ≥ 0 18

are eigenvalues, and ~e1, ~e2, ~e3 are the eigenvectors 19

corresponding to λ1, λ2, λ3 respectively. Using the Spectral 20

theorem, the tensor T can be decomposed into a linear 21

combination of three basis tensors(ball, plate and stick) as 22

in Equation 5. 23

T = (λ1 − λ2)~e1~e
T
1 + (λ2 − λ3)(~e1~e

T
1 + ~e2~e

T
2 )

+ λ3(~e1~e
T
1 + ~e2~e

T
2 + ~e3~e

T
3 )

(5)

In Equation 5, (~e1~e
T
1 ) describes a stick(surface) with associ- 24

ated saliency (λ1 − λ2) and normal orientation ~e1, (~e1~e
T
1 + 25

~e2~e
T
2 ) describes a plate(curve) with associated saliency (λ2− 26

λ3) and tangent orientation ~e3, and (~e1~e
T
1 + ~e2~e

T
2 + ~e3~e

T
3 ) 27

describes a ball(junction) with associated saliency λ3 and no 28

orientation preference. 29

A tensor TP is computed for each point P as the 30

weighted sum of ℵΘ tensors corresponding to the orienta- 31

tions of the Gabor jets and is defined as, 32

TP =
1

ℵΘ

ℵΘ∑
θ=1

Tθ (6)

where Tθ is the tensor corresponding to the Gabor filter 33

orientation θ and is calculated as described in the next 34

section. 35

4.2.1 Eigenvectors 36

The eigenvectors ~e1, ~e2, ~e3 of the tensor Tθ form an or- 37

thonormal basis system in which the normal orientation ~e1 38

is aligned with the normal ~NP at point P , and the tangent 39

orientation ~e3 is aligned with the orientation 2π
θ of the Gabor 40

jet. ~e2 is computed as the cross product of ~e1 and ~e3 and 41

finally, ~e3 is recalculated as the cross product of ~e1 and 42



C. POULLIS: LARGE-SCALE URBAN RECONSTRUCTION WITH TENSOR CLUSTERING AND GLOBAL BOUNDARY REFINEMENT 5

~e2. The recalculation of ~e3 is essential to ensure a proper1

orthonormal basis system, since the initial orientation θ is2

possible to be a projection of the actual vector. Hence, the3

eigenvectors are given by,4

~e1 = ~NP (7)

5

~e3 = 〈cos(θ), sin(θ), 0〉 (8)

6

~e2 = ~e1 × ~e3 (9)

7

~e3 = ~e1 × ~e2 (10)

4.2.2 Eigenvalues8

In what follows, let Mc be defined as the magnitude of9

the vector ~c = 〈riP , HP
var, N

P
var〉. In order to determine the10

eigenvalues we define three equations as follows.11

The tensor as defined in Equation 6 is modelled after12

Gabor responses (the response is high only for a tensor13

belonging to an edge in a specific orientation), its ”junction-14

ness” or junction-saliency should be 0 and hence we set15

λ3 = 0. This provides us our first equation. The other two16

equations are derived based on the following observations:17

• Points lying on a curve produced by a depth dis-18

continuity - which is the always the case for XYZ19

maps - have high response to the Gabor filters and20

high normal and height variation. Thus, a point on a21

curve will have a maximalMc. The vector ~cmeasures22

the ”curve-ness” or curve-saliency of a point and the23

range of its magnitude is 0 ≤Mc ≤
√

3].24

• On the other hand, points lying on a surface have no25

(or low) response to the Gabor filters and low normal26

and height variation. Thus, a point on a surface will27

have a minimal Mc. Specifically, the ”surface-ness”28

or surface-saliency of a point on a surface is defined29

as Ms =
√

3−Mc

ℵΘ
where ℵΘ is the number of Gabor30

filter orientations. Note that the division by the num-31

ber of Gabor filter orientations is imperative because32

points on curves have a high response to only one33

filter orientation; whichever is aligned to the curve.34

Although the resulting tensor at each point is the35

sum of ℵΘ tensors, ℵΘ−1 of those will not have high36

curve-saliency but will instead have high surface-37

saliency. Hence, the normalization ensures that there38

is no unjustified increase in surface-saliency.39

From Equation 5, we note that the surface-saliency of a40

point is given by λ1−λ2 and the curve-saliency of a point is41

given by λ2 − λ3. Hence, following the above observations42

we get the other two equations with the unknown eigenval-43

ues: λ1 − λ2 = Ms and λ2 − λ3 = Mc.44

Solving the three equations for the three unknown eigen-45

values we get46

〈λ1, λ2, λ3〉 = 〈
√

3−Mc +Mc ∗ ℵΘ

ℵΘ
,Mc, 0〉 (11)

where ℵΘ is the number of Gabor filter orientations. Figure 347

shows the relation between the eigenvalue differences λ1 −48

λ2 and λ2 − λ3 with respect to the magnitude Mc, used to49

Fig. 3: Relation between the eigenvalue differences λ1 − λ2

and λ2−λ3 with respect to the magnitude Mc which is used
to calculate the eigenvalues.

compute the eigenvalues. The λ values have been scaled by 1

a factor of (1/
√

3) to get them in the 0-1 range. As it can be 2

seen, a point lying on a curve will have a highMc. Therefore 3

the eigenvalue corresponding to the curve-saliency will be 4

higher i.e. λ2 − λ3. 5

Figure 4 shows the results of the above tensor encoding 6

for a synthetic image. The geometric interpretation of the 7

tensor is an ellipsoid in 3D space. There are three basis cases 8

which define the possible variations of the ellipsoid: 9

1) Tensors corresponding to points on a curve appear 10

as ellipsoids with a plate-like shape where the nor- 11

mal to the plate is the tangent to the curve. This tan- 12

gent corresponds to the eigenvector corresponding 13

to the smallest eigenvalue i.e. ~e3 of the tensor. 14

2) Tensors corresponding to points lying on a surface 15

appear as ellipsoids with a stick-like shape where 16

the orientation of the stick is the normal to the 17

surface. This normal corresponds to the eigenvector 18

with the largest eigenvalue i.e. ~e1 of the tensor. 19

3) Tensors corresponding to points where there is no 20

curve nor surface appear as perfect spheres/balls 21

since there is no preference towards a particular 22

orientation at those locations. 23

Examples are shown in Figure 4 for the first two cases; 24

the red straight line drawn shows a sequence of neighbour- 25

ing tensors corresponding to points on the same straight 26

line and the red planar surface drawn shows neighbouring 27

tensors corresponding to points lying on the same surface. 28

An alternative validation procedure would be to apply 29

the Spectral theorem to decompose the tensors into the three 30

basis tensors i.e. stick - Figure 5a, plate - Figure 5b, and ball 31

- Figure 5c. The eigenvalue differences can then be used 32

to classify each point into a surface, curve or junction as 33

described in [11] and is shown in Figure 5. 34

5 CLUSTERING 35

Clustering is performed on the tensor field using a region 36

growing approach. Tensors in the same region are grouped 37

together based on their similarity. To achieve this, we first 38

define a similarity measure between two tensors, then in- 39

troduce a comparison condition for deciding when a new 40

tensor should be added to an existing cluster, and finally 41
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Fig. 4: Visual interpretation of the encoded tensors for
the synthetic depth map shown. Tensors corresponding to
points on a curve appear as ellipsoids with a plate-like shape
where the normal to the plate is the tangent of the curve;
one such case is shown with a straight red line. Tensors
corresponding to points on a surface appear as ellipsoids
having a stick-like shape where the direction of the stick is
the normal to the surface; one such case is shown with a red
plane.

use this condition to grow the cluster by applying it to all1

neighbour tensors of that cluster. A unique feature of this2

method is that even though we have all the different per3

point metrics as input, unlike all other methods, we do not4

need to ask the user to define a large number of threshold5

values. All the terms in the comparison are adaptively6

computed for each new tensor.7

5.1 Similarity measure8

We define the similarity measure between two tensors Ti9

and Tj as,10

d(Ti,Tj) = 1− trace(Ti.Tj)

||Ti||.||Tj ||
(12)

where ||.|| is the Frobenius norm. The range of this similarity11

measure is 0 ≤ d(Ti,Tj) ≤ 1 and d(Ti,Tj) = 0 iff the12

two tensors being compared are identical. Although several13

other similarity measures have been reported (e.g. [5], [2],14

[9]), this measure, which was first introduced by [6], is pre-15

ferred because it does not require the eigen-value/-vector16

decomposition of the two tensors, and hence is faster to17

calculate. Figure 6b shows the similarity variation measured18

as the maximum minus the minimum similarity between the19

tensors in the 8-neighbourhood of each point in the depth20

map shown in Figure 6a.21

5.2 Deciding whether two Tensors are Similar22

In the region growing method for clustering, typically at23

this point various thresholds need to be defined to deter-24

mine whether two tensors are similar or not. As mentioned25

before, in contrast to existing techniques, we do not require26

user-defined thresholds at all. Instead we propose a new27

technique for adaptively computing a comparison condition28

using the per-candidate and per-cluster statistics as its basis.29

This is described next.30

5.2.1 Per-cluster statistics 1

Assume that a cluster C contains N tensors TCi , 1 ≤ i ≤ N 2

at iteration/time t. First, we compute the cluster’s average 3

tensor T̄ t = 1
N

∑N
i=1 T

C
i at iteration/time t. Second, we 4

calculate the probability distribution function (pdf) φCW of 5

the similarity distances between the tensors TCi contained 6

in the cluster and the average tensor T̄ ti at the time ti that 7

the tensor TCi was added to the cluster C . Thus the pdf 8

gets continuously updated as new tensors get added to the 9

cluster and in turn influences which new tensors can be 10

added to the cluster in an adaptive manner. 11

The pdf φCW for a cluster C is modeled as a Weibull 12

distribution. It has already been shown [1] that Extreme 13

Value distributions and in particular the Weibull distribu- 14

tion significantly outperforms other distributions such as 15

Gaussian, Student-t, etc, in cases where the observations 16

represent similarities and therefore are closer (or equal) to 17

zero, leading to zero-mean and/or zero-variance. This is 18

clearly brought out in Figure 7, which shows three distribu- 19

tions being applied on the same set of tensors corresponding 20

to the surface points of the area shown in Figure 8a; two 21

extreme value distributions Gumbel and Weibull, and the 22

Gaussian distribution. 23

Thus, the pdf φCW for a cluster C is given by, 24

φCW = (
α

β
)(
x

β
)a−1e−( xβ )α (13)

where α > 0 is the shape parameter, β > 0 is the scale pa- 25

rameter, and x is the observation i.e. the similarity measure 26

defined in Equation 12. In practice, because of the many log- 27

arithm calculations involved when fitting the Weibull distri- 28

bution, and the fact that some similarity measures are close 29

to zero [and the logarithm of zero is undefined], x represents 30

the shifted similarity measure given by 1+d(Ti,Tj) such that 31

the minimum value of the range of the observations is 1, 32

rather than 0. 33

The mean of φCW is defined as µφ = βΓ(1 + 1
a ) and the 34

variance as σ2
φ = β2[Γ(1 + 2

α ) − Γ2(1 + 1
α )], where Γ(.) is 35

the gamma function given by Γ(n) =
∫∞

0
e−xxn−1dx. 36

Given a set of observations/samples, the estimation of 37

the shape α and scale β parameters of the Weibull distri- 38

bution is done using Maximum-Likelihood Estimation as 39

described in detail in the Appendix. 40

5.3 Cluster Formation 41

Region growing proceeds as follows. A candidate tensor 42

Tnew considered for inclusion in cluster C is first compared 43

with the average tensor TC of the cluster and added to 44

the cluster iff the probability of the similarity measure 45

φWC (d(Tnew,TC)) is higher than the probability of the mean 46

µC perturbed by the standard deviation σ. Thus if the 47

following comparison condition is true, 48

φWC (µC + σC) ≤ φWC (d(Tnew,TC)) ≤ φWC (µC) (14)

the candidate tensor Tnew is added to the cluster. The choice 49

for this is based on the empirical rule for probability models 50

which states that about 67% of the values are contained 51

within one standard deviation of the mean. This has also 52

been verified in practice and has proven to be stable over 53

different datasets. 54
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(a) (b) (c) (d)

Fig. 5: Application of the Spectral theorem: each tensor is decomposed into three basis tensors. Figures (a), (b) and (c) depict
the points classified as surfaces, curves or junctions respectively, according to their eigenvalue differences as explained in
Equation 5. Figure (d) shows the orientation corresponding to each type i.e. for surfaces it represents the normal to the
surface, for curves it represents the tangent to the curve, and for junctions it appears black.

(a) (b)

Fig. 6: (b) Similarity variation measured as the maximum
minus the minimum similarity between the tensors in the
8-neighbourhood of each point in the depth map shown in
(a). Note that the color curve for (b) has been adjusted for
easier readability.

A cluster C0 is initialized with the first tensor T0 in the1

tensor field. All tensors in the 8-neighbourhood of T0 are2

considered for inclusion. A candidate tensor for which the3

comparison in Equation 14 is true is added to the cluster C04

and the statistics are updated. Moreover, the neighbours of5

the newly added tensor are also considered for inclusion in6

C0. This process is repeated until all neighbouring tensors7

[neighbours of all tensors contained in the cluster] are8

considered for inclusion into the cluster C0. A new cluster9

C1 is then initialized with a neighbouring tensor for which10

the comparison was false, or had not been yet considered.11

This process is repeated until all tensors are considered and12

belong to some cluster 1.13

Typically region growing algorithms are very sensitive14

to the initialization however in this case changing the initial15

starting point will primarily affect the sequence in which16

the clusters are being formed and not so much the final17

outcome. It is exactly for this reason (i.e. to address the18

problem of sensitivity/robustness) that a distribution of the19

tensor similarities is calculated for each cluster rather than20

a distribution of the per-cluster metrics e.g. height, normal,21

etc. The samples used to calculate the distribution have very22

small values and are close to zero e.g. < 0.03, hence the23

decision for using an Extreme Value Distribution to model24

these; and in particular the Weibull distribution which can25

be calculated with a much smaller sample size than other26

1. An animation of the clustering algorithm is shown here

distributions. These (Weibull distribution and small sample 1

size) are what make the region growing algorithm more 2

robust to changes in the initialization, since a good fit for the 3

distribution will be available even after the first few points. 4

Equation 14 formulates the comparison in such a way 5

that after each addition to a cluster the comparison also 6

is updated according to the latest cluster’s statistics. Thus 7

every comparison test is potentially different from the pre- 8

vious. In practice, during the initial stages of the clustering 9

there are moderate changes in the mean µC and variance 10

σC which leads to moderately different comparison tests; 11

once a cluster contains enough tensors these deviations are 12

diminished since fitting the distribution converges to the 13

same/similar set of parameters. Figure 9 shows an example 14

of a cluster’s statistics during the initial iterations i.e. 5th 15

containing 5 samples, and the final i.e. 1925th containing 16

1925 samples 2. 17

As previously mentioned, fitting a Weibull distribution 18

involves many logarithm calculations which as a result 19

significantly increase the computation time. To address this, 20

we re-fit the Weibull distribution at every new insertion 21

until it reaches a stable level. Our experiments have shown 22

that the changes occurring to the mean and variance of a 23

cluster’s distribution dramatically reduce after the first 50 24

samples. Thus, after the first 50 iterations, we opt out of 25

recalculating the mean and variance unless (i) the ratio be- 26

tween the last two mean estimations and the ratios between 27

the last two variance estimations is less than 95% or, (ii) 28

an additional 50 samples have been added to the cluster 29

without recalculating the mean and variance. This results in 30

significant improvement in computation speed. 31

5.4 Cluster Refinement 32

Clusters resulting from actual geospatial features with less 33

or no significance such as bumps on the ground, shingles, 34

grass, etc., or from noise during the acquisition process are 35

removed by merging as described next. 36

First, an adjacency graph is built based on the result of 37

the tensor clustering. In addition to keeping track of neigh- 38

bouring clusters, the graph also stores point-level informa- 39

tion i.e. how many and which points are neighbouring. 40

The cluster refinement is an iterative process which 41

merges every cluster C− containing a small number of 42

2. An animation of the Weibull distribution parameter estimation
with Maximum Likelihood is shown here

https://youtu.be/E5Xuj5k7vr4
https://youtu.be/Ray99d6H35w
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Fig. 7: Comparison between two extreme value distri-
butions (Gumbel, Weibull) and the Gaussian distribu-
tion for the set of tensors corresponding to the surface
points of the marked area shown in Figure 8a. As it can
also be visually confirmed, the Weibull distribution can
provide a more accurate representation.

(a) (b)

(c) (d)

(e) (f)

Fig. 8: (a) The normalized XYZ depth map of a build-
ing. The three distributions were tested on the tensors
corresponding to the surface points in the marked
area. (b) The mesh corresponding to the depth map in
(a). (c) Color-coded clusters. (d) The complete sparse
boundary map corresponding to the clustered regions
in (c). (e) The boundary positions after snapping and
adjustment are shown in red. The optimized boundary
positions are shown in green. A closeup is shown in (f).

(a) 5th iteration, 5 samples (b) 1925th iteration, 1925 samples

Fig. 9: The shape and scale parameters of the distribution [and therefore the mean and variance] converge to the same
values as the number of iterations [and therefore samples] increases. The results shown correspond to the surface shown
in Figure 8a,8b.
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points i.e. ≤ 5 to a cluster C
′

if and only if the following1

conditions hold true,2

• the cluster C
′

is a neighbour of C− in the adjacency3

graph4

• the cluster C
′

has the highest number of neighbour-5

ing points from all neighbours of C−6

• the cluster C
′

contains at least twice the points of C−7

If the above conditions are true, then the cluster C− is8

absorbed by C
′

and all the information in the clusters and9

the adjacency map are updated to reflect the change.10

As mentioned above, this is an iterative process which11

is repeated until no merge has occurred. During our experi-12

ments the maximum number of iterations has been six with13

an average number of four iterations, and the maximum14

reduction in the number of clusters of around 90% with15

an average reduction in the number of clusters of around16

75%. Further to this, an additional average reduction of17

35% occurs after the removal of vertical surfaces i.e. surfaces18

for which the angle between their orientation and the nadir19

direction is greater than 45◦.20

We tested our clustering method on several pointcloud21

datasets of different resolutions which exhibit significant22

variability in geospatial characteristics e.g. ground surface23

inclination, building density, etc.24

6 BOUNDARY EXTRACTION AND REFINEMENT25

The result of the clustering is the formation of a set of26

contiguous regions. Perhaps one of the most difficult tasks27

in urban reconstruction from LiDAR data is extracting28

boundaries corresponding to depth discontinuities. Due to29

the zig-zag scanning fashion of the LiDAR scanner, depth30

discontinuities appear jagged in the captured data. Several31

approaches have already been proposed [22], [14], [21] for32

refining the boundaries however they all treat each cluster33

of points individually. In this work we propose a different34

technique for refining boundaries which unlike the existing35

work reformulates this boundary refinement as a global36

optimization problem based on the following two observa-37

tions; (i) all cluster boundaries [not on the captured image38

boundary] between adjacent clusters are complementary to39

each other and (ii) object boundaries must align to dom-40

inant directions. The boundary points of each cluster are41

extracted, adjusted, refined and finally extruded to produce42

3D lightweight polygonal models. The following subsec-43

tions further describe the boundary extraction process, the44

subsequent refinement and optimization steps, and the final45

extrusion to 3D models.46

6.1 Boundary Extraction47

The boundaries of each cluster Ci, 0 ≤ i ≤ M where M is48

the number of clusters produced by the tensor clustering,49

are extracted as follows.50

A 2D map is created for Ci marking all the points51

contained in the cluster. The cluster’s boundary points BCi52

are then retrieved from the map using the algorithm of53

Suzuki et al in [19]. The result is the dense set of the 2D54

image locations corresponding to the 3D exterior boundary55

points surrounding all points within the cluster. These are56

further reduced to a minimal set of the 2D image locations 1

of the 3D boundary points after applying the iterative-end- 2

point fit algorithm of Douglas-Peucker in [4] as shown in 3

Figure 8d. During the simplification only colinear points are 4

removed from the set i.e. the threshold is very small and set 5

to τ = 0.01. This process is repeated until boundaries for all 6

clusters have been extracted and simplified. 7

An example of the boundary extraction process is shown 8

in Figure 10a. The points contained in a cluster representing 9

part of a roof are shown with red in the normalized depth 10

map. The dense boundary points are shown with a bright 11

red color, which upon further reduction result in the simpli- 12

fied boundary points shown as blue pixels in the close-up 13

in Figure 10b. 14

(a) (b)

Fig. 10: An example of the boundary extraction process
being applied to a cluster containing points representing
part of a roof. The points are shown in red and the dense
boundary points extracted are shown in bright red in (a). (b)
shows a close up of the simplified boundary points in blue.

6.2 Snapping and Adjustment 15

Two adjacent clusters have complementary boundary com- 16

ponents i.e. some of the boundary points in one cluster 17

will correspond and complement some of the neighbouring 18

cluster’s boundary points. Refining the boundary points 19

separately almost always leads to undesirable effects such as 20

misalignment between the initially complementary bound- 21

aries; this problem often appears as holes in the resulting 22

3D models. In order to ensure that there is no misalignment 23

between the final model’s neighbouring boundaries, we 24

group neighbouring boundary points together prior to the 25

refinement. This helps in avoiding holes and making the 26

generated geometry water-tight. 27

Boundary points Bi, Bj from any cluster which are 28

within a user-defined radius i.e. τr = 2px from each other 29

are grouped into a neighbourhood ℵ such that ∀Bi, Bj ∈ 30

ℵ ⇒ ||Bi − Bj || ≤ τr. For all subsequent processing each 31

boundary point is represented in terms of its handle: 32

• the neighbourhood’s location in the image ( ¯uℵx , ¯vℵy ) 33

computed as the average of the image locations[2D] 34

of all points contained within the neighbourhood. 35

• the neighbourhood’s X, Y components of its 3D posi- 36

tion computed as the average X, Y components of all 37

points within the neighbourhood. 38

The 3D position for each point Bi contained in a neighbour- 39

hood group is then snapped to the group’s handle’s X,Y 40

components but retaining the Z component of the original 41

3D point (X̄ℵ, ¯Yℵy , ZBi). This allows the representation of 42
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boundary points with the same X,Y but different vertical1

values in the same neighbourhood, e.g., two points on a2

vertical wall may have the same X, Y components but3

different Z components between the ground and roof points.4

After the snapping process, all boundary points are5

expressed in terms of a set of handles. Figure 11 shows the6

neighbourhood handles resulting from the sparse boundary7

points in Figure 8d. Each large color-coded sphere repre-8

sents the handle of a neighbourhood and the small spheres9

with the same color [visible in the closeup] represent the ac-10

tual boundary points contained within the neighbourhood.11

Fig. 11: Each large color-coded sphere represents the handle
of a neighbourhood and the small spheres with the same
color [visible in the closeup] represent the actual boundary
points contained within it.

6.3 Refinement and Global Optimization12

The position of each neighbourhood’s handle is further13

adjusted through a process which iterates between a re-14

finement step and a global optimization step. The following15

sections describe these steps in detail.16

6.3.1 Detection of Dominant Orientations and Refinement17

Refinement involves (a) the detection of per-scene dominant18

orientations and (b) the handle position refinement for each19

neighborhood group based on the scene’s detected domi-20

nant orientations21

The dominant orientations present in the entire scene22

are extracted. First, for each group, a set of vectors repre-23

senting boundary orientations is computed by subtracting24

each pair of consecutive boundary points BXYprev and BXYnext.25

The vectors are kept unnormalized in order to account for26

different weights i.e. vectors resulting from the subtraction27

of pairs of boundary points whose distance is high will have28

a higher weight. The vectors are 2D and only contain the X,Y29

components of each 3D boundary point. Boundary points30

close to the image boundaries are excluded so as not to31

introduce spurious orientations corresponding to the image32

boundaries.33

Next, we perform Principal Component Analysis (PCA)34

on the entire set of vectors derived from all the neighbor-35

hood boundary groups in the scene and reduce it into a36

smaller representative set which accounts for most of the37

variance in the original variables. In our experiments, the38

maximum number of principal components (PCs) is set39

to 5 although it has been observed that metropolitan ar-40

eas following the Manhattan-style design contain primarily41

clusters corresponding to axes-aligned building structures42

and usually result in only 2-3 PCs.43

Finally, a Gaussian Mixture Model G2D(~v) is applied on 1

the set of PCs. In order to avoid having to fix the number 2

Ng of Gaussian distributions gi(~v), 1 ≤ i ≤ Ng contained in 3

the G2D(~v) we opt for using minimum-description length 4

(MDL) [18] to adaptively determine this number. The result 5

is the minimal set of the dominant orientations of all the 6

neighbourhood boundary groups in the scene represented 7

by the normalized means of each gi(~v) contained in the 8

G2D(~v). 9

6.3.2 Refinement based on Dominant Orientations 10

The dominant orientations are used to refine the position 11

of each neighbourhood’s handle. First, for each vector ~vB = 12

BXYnext−BXYcurrent resulting from subtracting two consecutive 13

boundary pointsBXYcurrent andBXYnext, we determine the gmax 14

contained in the GMM G2D(~v) in which ~vB is maximal, 15

gmax(~vB) = argmax(gi(~v
B))) (15)

where 1 ≤ i ≤ Ng and gi ∈ G2D . 16

Once the gmax is determined, the vector ~vB is projected 17

onto the vector representing the means µgmax . This results in 18

a refined position for one of the boundary points, i.e. BXYnext. 19

This process is repeated until the X and Y components of all 20

the boundary points have been refined. 21

6.4 Global Optimization Formulation 22

The refinement based on the dominant orientations con- 23

siderably improves i.e. linearizes, the appearance of the 24

boundaries. A final refinement using global optimization is 25

performed to ensure that the displacement introduced by 26

the previous steps also matches the observed data. For this 27

global optimization we define an error function Ef which 28

when maximized results in a mapping f for which the 29

boundary points are in their optimal positions. A boundary 30

location B is optimal when all the points along the bound- 31

ary lines connecting the previous point Bprev , B, and the 32

next point Bnext have maximal Gabor response. 33

The error function Ef is defined as a Gibbs potential, 34

E(f) = D(B̄XYcurrent)× e
− dρ (16)

where d = ||BXYcurrent − B̄XYcurrent|| is the distance be- 35

tween the optimized position B̄XYcurrent and the initial po- 36

sition BXYcurrent, ρ is the optimization search radius, and 37

D(B̄XYcurrent) is given by, 38

D(B̄XYcurrent) =

R(BXYprev,B̄
XY
current)∑

P=BXYprev

rP +

R(B̄XYcurrent,B
XY
next)∑

P=B̄XYcurrent

rP

(17)
where R(., .) is a function that rasterizes the line between 39

the two input points using Bresenham’s algorithm and, rP 40

is the Gabor response at location P . Intuitively, equation 17 41

gives a measure of how appropriate the optimized bound- 42

ary position is by evaluating the Gabor responses along the 43

lines beginning and ending at that position. 44

Figure 8e shows the boundary points after snapping and 45

adjustment as red. The optimized points are shown as green 46

overlaid on the Gabor response image. 47
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6.5 Reconstruction1

After the adjustment, refinement, and optimization, the2

boundaries are extruded to the ground [ground elevation is3

set to the minimum height in the scene], to form 3D models.4

The refined boundaries of each cluster can have arbitrary5

[but not self-intersecting] shapes. In order to handle these6

complex shapes we employ a variant of the line-sweep trian-7

gulation algorithm which can handle complex and concave8

geometry robustly. Normal information about the boundary9

points is taken into account during the triangulation in order10

to ensure smooth transitions between the planar surfaces of11

the reconstructed model. Furthermore, texture coordinates12

are computed for easier assignment of texture maps.13

7 EXPERIMENTAL RESULTS & EVALUATION14

We have extensively tested our methods on real data of15

city-scale size. Several point clouds captured with airborne-16

LiDAR scanners have been used, those of which exhibiting17

different characteristics are shown in this paper. Namely,18

Baltimore, MD which covers an area of 16km2, Denver,19

CO which covers an area of 14km2 and Oakland, ON20

which covers an area of 17km2. Within each dataset there21

is significant variability in terms of the geospatial object22

density, sampling density, and area type i.e. rural, suburban,23

urban.24

Figure 12 and 13 clearly show that our techniques scale25

up to large datasets. 3. The city of Baltimore, MD consists of26

36 components (each represented as an XYZ map of size27

1024x1024) generated using the structuring algorithm in28

[14]. Each component is processed independently and in-29

parallel using a Microsoft Azure Virtual Machine (Standard30

DS15 v2) with 20 cores and 140GB memory. The processing31

time for the clustering is determined by the time required32

to process the slowest component, and for Baltimore that33

was 22.75 hours . The city of Denver, CO consists of 20 com-34

ponents (each represented as an XYZ map of size 991x991)35

and the processing time was 16.2 hours. Table 1 summarizes36

these information and provides a comparison with the state-37

of-the-art large-scale modeling techniques in [16] and [14].38

As can be seen, our method does require more processing39

time. This is primarily due to the computations involved in40

recalculating the Weibull distribution (as explained in detail41

in the Appendix). However, the clustering results obtained42

using our approach outperform the other techniques in43

terms of geometric accuracy, while not requirng any pa-44

rameter tweaking whatsoever. The geometric accuracy is the45

equivalent to the surface fitting error and is defined as the46

RMS distance of the fitted surface points from their original47

position.48

Figure 15 shows all intermediate results of our tech-49

nique for four test sites exhibiting variability in terms50

of building/trees/cars/roads size and density. The depth51

map is shown in the first column and the sum of the52

gabor responses for all ie. 16 orientations is shown in the53

second column. The third column shows the height and54

normal variation map. The last two columns show the55

resulting clusters after the application of tensor clustering56

(fifth column) and the refined clusters generated by the57

3. An animation of the reconstructed models is shown here

global boundary refinement (sixth column) after merging 1

insignificant clusters i.e. < 4 points and, removing clusters 2

corresponding to vertical surfaces < 45◦. 3

An additional comparison was performed with the ap- 4

proach presented in [21] and later extended by [22] which 5

employs dual contouring on 2.5D pointcloud data. It should 6

be noted that their approach requires a total of 12 user- 7

defined thresholds. After extensive experimentation we 8

found the optimal values for these thresholds and used 9

them to generate the result in Figure 14. The original 10

captured data is assumed to be the ground truth. Each 11

reconstruction is compared against the ground truth by 12

computing the Hausdorff distance [3] for a fixed number 13

of sample points for both (i.e. 300K). A visualization is 14

shown in Figure 14a where the distances are shown with 15

RGB colors. The RMS error, the Hausdorff distances’ range, 16

and the mean error for our reconstruction are 0.174456, 17

[0, 0.559475], 0.103138, respectively. For dual contouring 18

these values are 0.212459, [0, 0.562199], and 0.141765. As it 19

is evident, our method results in improved reconstructions. 20

Much of the errors occurring [note that the maximum error 21

is 0.559475] are due to noise in original data which when 22

compared with the planar surfaces may result in a high 23

error. 24

Figure 14 shows a visual comparison between our re- 25

construction (left), the original captured data (middle), and 26

the dual contouring reconstruction (right). While, from such 27

visual qualitative assessment, it may seem as though the re- 28

sults are quite similar, more careful visual inspection shows 29

that for certain thin structures dual contouring seems to fail 30

by creating vertical ”ridges” in the reconstruction. Scaling 31

to larger areas seems to be another problem with the dual 32

contouring implementation. Despite the fact that we used 33

the provided source code (without modifications other than 34

experimenting to determine the optimal values of the 12 35

thresholds required), when running it on the same machine 36

as the one we used for our method, the dual contouring 37

program was unable to generate a 3D model for larger areas 38

than this. 39

Our experiments have shown that the approach in 40

[22] performs best for small building-scale reconstructions 41

i.e. the input pointcloud represents a single building (or 42

sequence of attached buildings) and is cropped at the 43

buildings boundaries in a preprocessing step before being 44

processed. In cases of multiple disjoint buildings (such as 45

the own in Figure 14) dual contouring produces building 46

boundaries which may be visually pleasing but significantly 47

deviate from the original data; hence the high error at the 48

roofs/vertical walls. This can be attributed primarily to the 49

quadtree simplification. The proposed approach makes no 50

assumptions about the data and therefore all clusters are 51

processed the same regardless of the type of object they 52

represent e.g. building, tree, car, boats, etc. Furthermore, 53

[22] use triangulation based on the curvature to model 54

the clusters which, at the cost of increasing the geometry, 55

produce models which are closer to the original data even 56

in the presence of noise i.e. the noise is carried over the 57

the reconstructed models. In the proposed approach, each 58

cluster is modeled as a linear surface which drastically 59

reduces the geometry but may lead to higher deviations 60

from the original data; hence the higher error at the non- 61

https://youtu.be/puo5prNtbQU
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Fig. 12: The final clusters after tensor clustering. Baltimore, MD has a size of 16km2, the most complex part of which is
shown here.

Dataset Area (km2) # Comp. Comp. Resolution Processing time (hr) Geometric Accuracy m2

Our approach [16] [14] Our approach [16] [14]
Baltimore 16 36 1024× 1024 22.75 9 1.3 6.96× 10−03 9.72× 10−01 0.48× 10−01

Denver 14 19 991× 991 16.2 3.7 1 4.826× 10−03 4.915× 10−01 0.311× 10−01

TABLE 1: Comparison table between our approach and state-of-the-art in [16] and [14]. Our approach requires more
processing time for the same number of components primarily due to the recalculation of the Weibull distribution. However
it is completely automatic, does not require any parameter value to be specified by the user and it produces superior results
in terms of geometric accuracy.

flat ground area in Figure 14.1

8 CONCLUSION2

We have presented a new method for automatic 3D recon-3

struction of large scale urban areas from raw lidar (point4

cloud) data. Our most significant contribution, the elegant5

second-order symmetric tensor representation for encoding6

all metric information about points, does not require any7

user defined parameter for the entire region construction8

process, making our method automatic, effective and dis-9

tinctly different from previous methods. All earlier methods10

are at best semi-automatic typically requiring the user to11

carefully specify a plethora of parameter values which are12

input data dependent and needed to produce usable recon-13

structions, making the process human effort intensive, dif-14

ficult and inefficient. In contrast, we show that our solution15

works for any of the highly varied data sets we used to16

test and evaluate our reconstruction process. Our process17

includes a number of innovative techniques, a robust ag-18

glomerative tensor clustering technique for region finding,19

adaptive computation of per-point and per-cluster statistical20

parameters for the Weibull probability distribution function21

(pdf), whose parameters are dynamically updated as new22

points get added to the cluster, and a more accurate multi-23

stage region boundary extraction technique which reformu-24

lates it as a global optimization problem. We have tested25

and evaluated our method extensively on large scale urban26

areas from the United States with varying characteristics. To27

the best of our knowledge no existing method can generate28

this quality of reconstructions automatically for such large 1

scale data. We plan to extend this work by using colour 2

image data along with 3D lidar data, possibly using deep 3

learning techniques to do the classification prior to 3D 4

reconstruction. We will also investigate new methods for 5

automating texture mapping to produce realistic 3D digital 6

worlds. 7
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[6] M. Herdin, N. Czink, H. Özcelik, and E. Bonek. Correlation matrix8

distance, a meaningful measure for evaluation of non-stationary9

mimo channels. In Vehicular Technology Conference, 2005. VTC 2005-10

Spring. 2005 IEEE 61st, volume 1, pages 136–140. IEEE, 2005.11

[7] F. Lafarge and P. Alliez. Surface reconstruction through point set 1

structuring. In Computer Graphics Forum, volume 32, pages 225– 2

234. Wiley Online Library, 2013. 3

[8] H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu, and R. Yang. 4

Semantic decomposition and reconstruction of residential scenes 5

from lidar data. ACM Transactions on Graphics (TOG), 32(4):66, 6

2013. 7

[9] J. Malcolm, Y. Rathi, and A. Tannenbaum. A graph cut approach 8

to image segmentation in tensor space. In Computer Vision and 9

Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. 10

IEEE, 2007. 11



C. POULLIS: LARGE-SCALE URBAN RECONSTRUCTION WITH TENSOR CLUSTERING AND GLOBAL BOUNDARY REFINEMENT 14

(a)

(b)

Fig. 14: (a) Visualization of the Hausdorff Distance between
the original captured data and the result of our approach
(left), and between the original captured data and the re-
sult of the approach in [22]. (b) 3D visualization of the
reconstructions. For dual contouring, optimal values were
determined via experimentation for the 12 required user-
defined thresholds. (left) The result of our approach. (mid-
dle) Triangulation of the original captured data. (right) The
result of dual contouring.

[10] B. C. Matei, H. S. Sawhney, S. Samarasekera, J. Kim, and R. Kumar.1

Building segmentation for densely built urban regions using aerial2

lidar data. In Computer Vision and Pattern Recognition, 2008. CVPR3

2008. IEEE Conference on, pages 1–8. IEEE, 2008.4

[11] G. Medioni, M.-S. Lee, and C.-K. Tang. A computational framework5

for segmentation and grouping. Elsevier, 2000.6

[12] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry in7

3d geometry: Extraction and applications. In Computer Graphics8

Forum, volume 32, pages 1–23. Wiley Online Library, 2013.9

[13] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. v. Gool, and10

W. Purgathofer. A survey of urban reconstruction. In Computer11

graphics forum, volume 32, pages 146–177. Wiley Online Library,12

2013.13

[14] C. Poullis. A framework for automatic modeling from point cloud14

data. IEEE transactions on pattern analysis and machine intelligence,15

35(11):2563–2575, 2013.16

[15] C. Poullis. Tensor-cuts: A simultaneous multi-type feature ex-17

tractor and classifier and its application to road extraction from18

satellite images. ISPRS Journal of Photogrammetry and Remote19

Sensing, 95:93–108, 2014.20

[16] C. Poullis and S. You. Automatic reconstruction of cities from21

remote sensor data. In Computer Vision and Pattern Recognition,22

2009. CVPR 2009. IEEE Conference on, pages 2775–2782. IEEE, 2009.23

[17] C. Poullis and S. You. Photorealistic large-scale urban city model24

reconstruction. Visualization and Computer Graphics, IEEE Transac-25

tions on, 15(4):654–669, 2009.26

[18] J. Rissanen. Modeling by shortest data description. Automatica,27

14(5):465–471, 1978.28

[19] S. Suzuki et al. Topological structural analysis of digitized binary29

images by border following. Computer Vision, Graphics, and Image30

Processing, 30(1):32–46, 1985.31

[20] J. Xiao and Y. Furukawa. Reconstructing the worlds museums.32

International Journal of Computer Vision, 110(3):243–258, 2014.33

[21] Q.-Y. Zhou and U. Neumann. 2.5 d dual contouring: A robust34

approach to creating building models from aerial lidar point35

clouds. In Computer Vision–ECCV 2010, pages 115–128. Springer, 1

2010. 2

[22] Q.-Y. Zhou and U. Neumann. 2.5 d building modeling by discov- 3

ering global regularities. In Computer Vision and Pattern Recognition 4

(CVPR), 2012 IEEE Conference on, pages 326–333. IEEE, 2012. 5

Charalambos Poullis was born in Nicosia, 6

Cyprus, in 1978. He received the B.Sc. degree 7

in Computing and Information Systems with First 8

Class Honors from the University of Manchester, 9

UK, in 2001, and the M.Sc. in Computing Sci- 10

ence with specialisation in Multimedia and Cre- 11

ative Technologies, and Ph.D. in Computer Sci- 12

ence from the University of Southern California 13

(USC), Los Angeles, USA, in 2003 and 2008, 14

respectively. In 2010, after spending a year at the 15

Department of Computer Science, University of 16

Cyprus as a Visiting Lecturer, he joined the Department of Multimedia 17

and Graphic Arts, Cyprus University of Technology as a Lecturer, and 18

in 2014 became an Assistant Professor. Since August 2015, he has 19

been an Associate Professor with the Department of Computer Science 20

and Software Engineering at the Faculty of Engineering and Computer 21

Science at Concordia University where he also serves as the Director of 22

the Immersive and Creative Technologies (ICT) lab. 23

His current research interests lie at the intersection of computer vision 24

and computer graphics. More specifically, he is involved in fundamental 25

and applied research covering the following areas: acquisition technolo- 26

gies & 3D reconstruction, photo-realistic rendering, feature extraction & 27

classification, virtual & augmented reality. 28

More specifically, he is involved in fundamental and applied research 29

covering the following areas: acquisition technologies & 3D reconstruc- 30

tion, photo-realistic rendering, feature extraction & classification, virtual 31

& augmented reality. Charalambos is a member of the Association 32

for Computing Machinery(ACM); Institute of Electrical and Electronics 33

Engineers (IEEE) Computer Society; Marie Curie Alumni Association 34

(MCAA); ACM Cyprus Chapter, where he also served in the manage- 35

ment committee between 2010-2015; and British Machine Vision Asso- 36

ciation (BMVA). Charalambos has been serving as a regular reviewer in 37

numerous premier conferences and journals since 2003. 38



C. POULLIS: LARGE-SCALE URBAN RECONSTRUCTION WITH TENSOR CLUSTERING AND GLOBAL BOUNDARY REFINEMENT 15

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j)

(k
)

(l
)

(m
)

(n
)

(o
)

Fi
g.

15
:E

xa
m

pl
e

re
su

lt
s

fo
r

di
ff

er
en

t
si

te
s

de
m

on
st

ra
ti

ng
te

ns
or

cl
us

te
ri

ng
an

d
gl

ob
al

bo
un

da
ry

re
fin

em
en

t.
Fi

rs
t

co
lu

m
n:

de
pt

h
m

ap
.S

ec
on

d
co

lu
m

n:
su

m
of

G
ab

or
re

sp
on

se
s.

Th
ir

d
co

lu
m

n:
he

ig
ht

an
d

no
rm

al
va

ri
at

io
n

m
ap

.
Fo

ur
th

co
lu

m
n:

co
lo

r
co

de
d

pa
tc

he
s

re
su

lt
in

g
fr

om
te

ns
or

cl
us

te
ri

ng
.

Fi
ft

h
co

lu
m

n:
th

e
re

co
ns

tr
uc

te
d

m
od

el
s

te
xt

ur
ed

w
it

h
th

e
co

lo
r

co
de

d
pa

tc
he

s.
Te

ns
or

cl
us

te
ri

ng
ha

s
no

us
er

-d
efi

ne
d

th
re

sh
ol

ds
.


	Introduction
	Related Work
	Technical Overview
	Encoding using the Tensorial Representation
	Per-point Metrics
	Tensor field computation
	Eigenvectors
	Eigenvalues


	Clustering
	Similarity measure
	Deciding whether two Tensors are Similar
	Per-cluster statistics

	Cluster Formation
	Cluster Refinement

	Boundary Extraction and Refinement
	Boundary Extraction
	Snapping and Adjustment
	Refinement and Global Optimization
	Detection of Dominant Orientations and Refinement
	Refinement based on Dominant Orientations

	Global Optimization Formulation
	Reconstruction

	Experimental Results & Evaluation
	Conclusion
	References
	Biographies
	Charalambos Poullis


