
Photorealistic Large-Scale Urban City
Model Reconstruction

Charalambos Poullis, Student Member, IEEE, and Suya You, Member, IEEE

Abstract—The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In
particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of
different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of
the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience
of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale
virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid
reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is
presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs
containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive,
respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques,
can recover missing or occluded texture information by integrating multiple information captured from different optical sensors
(ground, aerial, and satellite).

Index Terms—Large-scale modeling, rapid reconstruction, photorealistic model.

Ç

1 INTRODUCTION

VIRTUAL reality technologies are becoming increasingly
popular and are being widely used in a range of

different applications. In particular, civil and defense
applications employ such technologies for the simulation
of real-world operations areas. In such cases, the models of
urban buildings are of significant value since they facilitate
planning, response, and real-time situational awareness in
highly occluded urban settings. The personnel that simu-
late, plan, monitor, and execute responses to natural or
man-made events can gain insight and make better
decisions if they have a comprehensive view of the
structures and activity occurring at an operational scene.
The models are essential components of such a view,
helping people comprehend spatial and temporal relation-
ships. In addition, a photorealistic appearance is essential
for the enhancement of the visual richness of the models
and the immersive experience of the users.

While models are important assets, the creation of
photorealistic large-scale models remains at best a difficult,
time-consuming manual task. The science for rapidly
sensing and modeling wide-area urban sites and events,
in particular, pose difficult or unsolved problems. Over the
years, a wealth of research, employing a variety of sensing
and modeling technologies, has been conducted to deal
with the complex modeling problem. Different types of
techniques, ranging from computer vision, computer

graphics, photogrammetry, and remote sensing, have been
proposed and developed so far; each has unique strengths
and weaknesses, and each performs well for a particular
data set but may fail under another.

Similarly, the generation of high-resolution photorealis-
tic textures has been extensively investigated and many
algorithms have been already proposed. However, the
complexity of these algorithms increases considerably when
dealing with large-scale virtual environments. In addition,
these texturing techniques for large-scale environments are
limited to using a single image per building which makes it
impossible to recover textures for missing or occluded areas
and requires even more time-consuming manual work.
These problems impose a serious limitation in achieving a
realistic appearance for the models, and in extent, the
immersive experience of the users is diminished.

In this work, we address the problem of rapid creation of
photorealistic large-scale virtual environments. First, we
address the 3D model reconstruction problem and propose
a novel, extendible parameterized geometric primitive for
the automatic identification and reconstruction of building
models. We leverage the symmetry constraints found in
man-made structures to reduce the number of unknown
parameters needed during the model reconstruction, thus
considerably reducing the computational time required. In
addition, buildings containing complex linear and non-
linear surfaces such as churches, domes, stadiums, etc., are
interactively reconstructed using a linear polygonal and a
nonlinear primitive, respectively.

Second, we address the problem of texturing, and propose
a rendering pipeline for the composition of photorealistic
textures. A significant advantage of this pipeline is that
textures for missing or occluded areas in one image can be
recovered from another image, thus eliminating the need for
any manual editing work. Images captured from multiple
sensors (ground, aerial, and satellite) are integrated together
to produce a set of view-independent, seamless textures.

654 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

. C. Poullis is with the Computer Graphics and Immersive Technologies
Laboratory, University of Southern California, 3737 Watt Way, PHE 108,
Los Angeles, CA 90089. E-mail: charalambos@poullis.org.

. S. You is with the Computer Graphics and Immersive Technologies
Laboratory, University of Southern California, 3737 Watt Way, PHE 432,
Los Angeles, CA 90089. E-mail: suyay@graphics.usc.edu.

Manuscript received 29 Feb. 2008; revised 1 Aug. 2008; accepted 6 Oct. 2008;
published online 10 Oct. 2008.
Recommended for acceptance by B. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2008-02-0029.
Digital Object Identifier no. 10.1109/TVCG.2008.189.

1077-2626/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

We have extensively tested the proposed approach with
a wide range of sensing data including satellite, aerial,
ground photographs, and Light Detection and Ranging
(LiDAR), and present our results.

2 RELATED WORK

2.1 Modeling

A good survey on large-scale modeling techniques can be
found in [8]. In [7], the authors present a method for
reconstructing large-scale 3D city models by merging
ground-based and airborne-based LiDAR data. The eleva-
tion measurements are used to recover the geometry of the
roofs. Facade details are then incorporated by the high-
resolution capture of a ground-based system which has
the advantage of also capturing texture information. The
textures aid in the creation of a realistic appearance of the
model. However, at the cost of having detailed facades, they
neglect to deal with the complexities and wide variations of
the buildings’ roof-types. The same authors later extended
their method to incorporate texture information from
oblique aerial images. Although they combine multiple
aerial images to determine the model’s textures, their
method is restricted to traditional texture mapping rather
than combining all available texture information to generate
a composite texture, i.e., blending. Therefore, a significant
color difference between images will cause visible and
nonsmooth transitions between neighboring polygons of
different texture images.

You et al. [20] present an interactive primitive-based
modeling system for the reconstruction of building models
from LiDAR data. Using the user input, their system
automatically segments the building boundary, performs
model refinement, and assembles the complete building
model. However, user input is required for the detection as
well as the identification of buildings and their roof-types.

In [17], the authors developed an interactive system for
reconstructing geometry using nonsequential views from
uncalibrated cameras. The calculation of all 3D points and
camera positions is performed simultaneously as a solution of
a set of linear equations by exploiting the strong constraints
obtained by modeling a map as a single affine view. However,
due to the considerable user interaction required by the
system, its application to large-scale areas is very limited.

The proposed system can deal with uncalibrated image
sequences acquired with a handheld camera in [14]. Based
on tracked or matched features, the relations between
multiple views are computed. From this, both the structure
of the scene and the motion of the camera are retrieved.
Although the reconstructed 3D models are visually im-
pressive, they consist of complex geometry—as opposed to
simple polygonal models—which requires further proces-
sing and limits their applications.

Nevatia et al. [13] propose a user-assisted system for the
extraction of 3D polygonal models of buildings from aerial
images. Low-level image features are initially used to build
high-level descriptions of the objects. Using a hypothesize
and verifying paradigm, they are able to extract impressive
models from a small set of aerial images. The authors later
extended their work in [9] to automatically estimate camera
pose parameters from two or three vanishing points and
three 3D to 2D correspondences.

A ground-based LiDAR scanner is used [4] to record a
rather complex ancient structure of significant cultural

heritage importance. Multiple scans were aligned and
merged together using a semiautomatic process, and a
complete 3D model was created from the outdoor structure.
The reconstructed model is shown to contain high level of
details; however, the complexity of the geometry (90 million
polygons for one building) limits this approach to the
reconstruction of single buildings rather than large scale.
Another ground-based approach is presented in [12], where a
two-stage process is employed in order to quickly fuse
multiple stereo-depth maps. The results are impressive
especially for a real-time system; however, the resulting
geometry is too complex and requires further processing in
order to make it usable in another application. A similar
ground-based approach is presented in [21], where multiple-
range images are integrated by minimizing an energy
functional consisting of a total variation regularization force
and anL1 data fidelity term. Similarly, the resulting geometry,
although impressive, is too “heavy” for most applications.

In a different approach, an interactive system is
proposed in [5], which can reconstruct buildings using
ground imagery and a minimal set of geometric primitives.
More recently, this system was extended in [15] to
incorporate point cloud support as part of the reconstruc-
tion; however, the required user interaction increases
considerably for large-scale areas. Moreover, the user
interaction depends on the desired level of detail of the
reconstructed models, which may vary considerably ac-
cording to the application.

In [16], the authors presented an interactive modeling
system that can detect and model large-scale buildings
having limited shape variations, such as single plane, cube,
saltbox, cylinder, sphere, etc. The system first segmented
interactively the building boundaries from LiDAR data, and
then used geometric primitives for model fitting and
refinement. In this work, we significantly extend the system
to handle more complex building types by introducing
several new techniques. A fully automatic approach is
employed for the segmentation of buildings and vegetation.
The parameterization technique is extended to handle more
complicated buildings such as L-shaped buildings, and a
new parameterized primitive is introduced for the automatic
identification and reconstruction of the buildings. Any
complex building resulting from the combination of single
building structures can be modeled by using a new
polygonal primitive. The new system has been extensively
tested, and it demonstrated its flexibility and capability for
rapidly modeling a wide range of complex buildings.

2.2 Texturing

One of the most popular and successful techniques in this
area is the one introduced in [5] which uses a small set of
images to reconstruct a 3D model of the scene. View-
dependent texture mapping (VDTM) is then performed for
the computation of the texture maps of the model. By
interpolating the pixel color information from different
images, new renderings of the scene can be produced. The
contributions of each image to a pixel’s color is weighted
based on the angle difference between the camera’s direction
and the novel viewpoint’s direction. The authors then
extended their work and showed how VDTM can be
efficiently implemented using projective texture mapping,

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 655

a feature available in most computer graphics hardware.
Although this technique is sufficient to create realistic
renderings of the scene from novel viewpoints, its computa-
tion is still too expensive for real-time applications, like
games or virtual reality. In addition, view-dependent texture
mapping works seemingly in cases where the images are
taken at regularly sampled intervals, which is not generally
true in the context of large-scale areas. Most images come
from satellites and aerial images are taken from a wide
baseline; thus, view-dependent texture mapping would
most definitely fail in such cases.

In [11], Martinez and Dreiiakis order geometry into
optimized visibility layers for each photograph. The layers
are subsequently used to create standard 2D image-editing
layers which become the input to a layered projective
texture rendering algorithm. However, this approach
chooses the best image for each surface rather than
combining the contributions of all the images to minimize
information loss.

Reflectance properties of the scene were measured in [4]
and lighting conditions were recorded for each image taken.
An inverse global illumination technique was then used to
determine the true colors of the model’s surfaces which
could then be used to relight the scene. The generated
textures are photorealistic; however, for large-scale areas, it
requires considerable amount of manual work for the
capturing and the processing of the data.

A method for creating renders from novel viewpoints
without the use of geometric information is presented in
[10], where densely regularly sampled images are blended
together. The image capture for small objects is very easily
achieved; however, this task is close to impossible to
perform for large-scale areas.

A slightly different approach for texture generation and
extraction is proposed in [19]. Given a texture sample in the
form of an image, a similar texture is created over an
irregular mesh hierarchy that has been placed on a given
surface; however, this approach cannot capture the “actual”
appearance of the models.

3 SYSTEM OVERVIEW

The system’s overview is summarized in Fig. 1. It consists of
three components:

1. preprocessing discussed in Section 4,
2. modeling discussed in Section 5, and
3. texturing discussed in Section 6.

In the Preprocessing component, the airborne LiDAR
data are resampled into a 2D regular grid structure, refined
(hole filling, smoothing) using graph-cut optimization and
gradient-descent, and segmented into two clusters, vegeta-
tion or ground. The Preprocessing component plays an
essential role in the accuracy and success of the Modeling
component, since it reduces the noise and inconsistencies
from the data while ensuring that important features such
as discontinuities are preserved. In addition, the use of a
regular grid structure greatly reduces the processing time
since all subsequent optimizations are performed in 2D
rather than in 3D.

In the Modeling component, initial 2D roof boundaries
are extracted from the previously generated regular grid,
either automatically for simple roof-types, or interactively
for complex and nonlinear roof-types. Three novel geo-
metric primitives are developed to refine the initial roof
boundaries in a coordinate-wise optimization:

1. an extendible parameterized primitive which can
automatically identify the most commonly occurring
roof-types;

2. a polygonal primitive for complex linear roof-types;
3. a nonlinear primitive for nonlinear roof-types. Once

the refined boundaries are determined by the
optimization, the 3D models are generated by fitting
the appropriate surface on the interior roof points
and extruding the roof boundaries to 3D. A
significant advantage of this approach is that a
single parameterized primitive can handle multiple
roof-types and therefore reduce the total number of
primitives required to reconstruct a large-scale
urban area.

Finally, in the Texturing component, the camera poses
for the ground, aerial, and satellite images are calculated
using interactively registered correspondences to the
reconstructed 3D models, and are used by the rendering
pipeline to generate the composite photorealistic textures. A
key aspect of this pipeline is the integration of multiple
information for the efficient and effective handling of
textures for missing or occluded areas.

4 POINT CLOUD DATA PREPROCESSING

The preprocessing of the raw 3D point cloud data is
performed in three steps: resampling, filtering, and

656 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 1. System overview. Three main components: preprocessing,

modeling, and texturing.

segmentation. The result is a classification of the refined
points into ground and vegetation.

4.1 Resampling

The unstructured 3D point cloud (Fig. 2a) is initially
resampled into a 2D regular grid (map shown in Fig. 2b).
To overcome the problem of information loss of the samples
stored in the grid, the dimensions of the grid are
determined on the basis of the sampling rate which is
automatically calculated either by specifying the desired
resolution or by specifying the maximum allowed error
tolerance between the samples. Figs. 2c and 2d show the
triangulated mesh generated from the resampled points.

4.2 Filtering

Noise in the measurements of the original data and
inconsistencies introduced by the resampling process are

removed while ensuring that important features such as

discontinuities are preserved. To achieve this, we exploit

the fact that normals provide directional information which

define the surface geometry of an object and perform a

normal optimization based on graph cuts to smooth the

normals, followed by a point optimization using gradient

descent to smooth the points.
The process is summarized in Fig. 3. A set of uniformly

distributed normals (Fig. 4c) computed from a half-sphere

(Figs. 4a and 4b) are used to relabel the noisy normals

computed from the original points [3]. Local neighborhood

information is used to compute the normal at each point in

the resampled map. For every point Pi, we define the

normal NPi of that point as

NPi ¼
1

8
�
X8

j¼1

NPj ; ð1Þ

where NPj is the normal computed with the neighboring

point Pj within the eight-neighborhood system. Each of the

eight normals NPj is computed as the cross product of the

vectors connecting the point Pi and two consecutive (in

clockwise order) neighboring points Pj; Pjþ1.

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 657

Fig. 2. Resampling of the 3D point cloud data into a regular grid.
(a) 3D Point cloud, (b) 2D Regular grid, (c) Triangulated mesh, and
(d) Triangulated mesh (top view).

Fig. 3. Refinement process overview.

Fig. 4. Computation of smooth normal labels from a half-sphere.
(a) Half-sphere point map, (b) Half-sphere in 3D (top-view), and
(c) Smooth normal labels computed from a.

This results in smoothing the normals while preserving
important features such as discontinuities [7]. A gradient-
descent optimization then refines the original points such
that their computed normals are identical to the smooth
relabeled normals.

We restate the problem of smoothing the noisy normals
as a problem of finding an optimal labeling f : Np �! L
which assigns a normal label l 2 L to each point p 2 N ,
where f is piecewise smooth and consistent with the
original data, and N is the initial normal map. This labeling
problem can be efficiently solved using graph cuts to
minimize an energy function of the form

EðfÞ ¼ EdataðfÞ þ � � EsmoothnessðfÞ; ð2Þ

where � is a smoothness weighting factor. Refer to the
Appendix for further details about graph cuts.

The energy data term in (2) provides a per-pixel measure
of how appropriate a label l 2 L is for a pixel p 2 N in the
observed data and is given by

EdataðfÞ ¼
X
p2N

DpðfðpÞÞ; ð3Þ

where DpðfpÞ is the data function for a point p 2 N and is
defined as

DpðfpÞ ¼ jNp �NfðpÞj; ð4Þ

where Np is the original normal of the point p and NfðpÞ 2 L
is the assigned normal label under the labeling fðpÞ :
Np �! NfðpÞ. Thus, the energy data term in (3) becomes

EdataðfÞ ¼
X
p2N
jNp �NfðpÞj: ð5Þ

The energy smoothness term in (2) provides a measure of the
difference between two neighboring pixels p; q 2 N with
labels NfðpÞ; NfðqÞ 2 L, respectively, and is given by

EsmoothnessðfÞ ¼
X
fp;qg2N

Vfp;qgðNfðpÞ; NfðqÞÞ; ð6Þ

where NfðpÞ; NfðqÞ 2 L are the assigned normal labels under
the labeling f and Vfp;qg is the interaction potential between
the neighboring pixels p; q 2 N . Let Np and Nq be the
original normals in the observed data of the pixels p; q 2 N ,
respectively, then we define a measure of the observed
smoothness between pixels p; q 2 N as

�p;q ¼ jNp �Nqj: ð7Þ

Similarly, we define a measure of smoothness for the global
minimization. Let NfðpÞ and NfðqÞ be the assigned normal
labels under a labeling f , then we define a measure of the
smoothness between the labels of neighboring pixels p; q 2 N as

~�p;q ¼ jNfðpÞ �NfðqÞj: ð8Þ

Using the smoothness measure defined for the observed
data and the smoothness measure defined for any given
labeling, the energy smoothness term in (6) becomes

EsmoothnessðfÞ ¼
X
fp;qg2N

ðKp;q � ~�p;qÞ; ð9Þ

where Kp;q ¼ 1þ �� e�
2��p;q

�2 j is the Boltzmann distribution

of the energy function �p;q which gives the probability of

the initial smoothness, � controls the smoothness uncer-

tainty, and � is a small constant. This ensures that two

neighboring pixels p; q 2 N with similar normal orientations

in the observed data will have small �p; q and, thus, a high

probability, given by Kp;q, which the assigned labels under the

labeling f will also have similar orientations and therefore
~�p;q will be small.

We define the set of smooth normal labels L to be a set of
uniformly distributed normals lying on the surface of a half-
sphere. Fig. 4a shows the point map corresponding to the
3D half-sphere in Fig. 4b. Fig. 4c shows the set of smooth
normal labels computed from the half-sphere’s point map
in Fig. 4a. The radius of the half-sphere can be altered
accordingly to control the smoothness and the number of
normal labels in the set L.

The result of the normal-based graph cut optimization is
a smooth normal map. Using the initial noisy points as
initial estimates, a point-based gradient-descent optimiza-
tion is employed, in which the spatial position of the initial
points is adjusted in every iteration, such that the computed
normal Np at a point p 2 N matches the smooth label
normal NfðpÞ returned by the graph cut optimization.

Our experiments have shown that the point-based
gradient-descent optimization is extremely fast since the
initial points are used as estimates and the optimization
converges to a solution within 10 iterations. Another
significant advantage of the refinement process is that the
hole filling is performed as a by-product of the normal
smoothing since the labeling f returned by the graph cut
optimization will include a label for all points in the map
even if the point initially has no label due to missing
information, i.e., a hole. In addition, the labeling is
performed on the premises of the observed data and labels
of the local neighborhood of the missing points, which is
controlled by the smoothness term, thus ensuring that the
new labels will not affect the consistency of the geometry.

For example, the initial normals in Fig. 5b are computed

from the original points in Fig. 5a. A graph cut optimization

performed using these initial normals and the smooth normal

labels from Fig. 5c results in the relabeled normals shown in

Fig. 5c. Finally, a gradient-descent optimization iteratively

refines the original points such that the computed normal at

each point matches the relabeled normal (Fig. 5d). Fig. 5e

shows the difference measured as the dot product between

the initial and smooth normal map.
As previously explained, there are two parameters which

control the refinement process:

1. the smoothness term weight � in (2), and
2. the size of the set of smooth labels L, which was

defined in terms of the radius of the half-sphere.

A closeup of a mesh produced by triangulating the refined

points is shown in Fig. 6. Different number of smooth

normal labels kLk (computed by varying the radius of the

half-sphere) and different values for the smoothness weight

� are shown. Our experiments have shown that � ¼ 0:25

and L ¼ ½100; 500� generate satisfactorily smooth results.

658 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

4.3 Segmentation

Buildings are man-made structures with the characteristic of

having roofs with uniform elevation and uniform orientation.

On the other hand, the elevation and orientation of trees and

other vegetation rapidly changes between neighboring
points. The goal of the segmentation is to determine points
with similar (or linearly varying) elevation and similar
orientation, and to group them into regions representing
building candidates. In addition, regions consisting of a
number of points less than a minimum are discarded.

4.3.1 Automatic Segmentation

We employ an automatic segmentation technique called
skewness-balancing which was introduced by [1] based on
the central limit theorem [6], which states that naturally
measured samples will lead to a normal distribution. The
assumption is that the terrain can be modeled by a normal
distribution and any man-made structures will disturb that
distribution. Thus, by removing the (nonground) points
which disturb the distribution from the data, the ground
points can be obtained. To achieve this, the third moment
about the mean—also known as skewness—is used to
measure the assymetry of the distribution and the fourth
moment—also known as kurtosis—is used to measure the
size of the distribution’s tail. Experiments have shown that
depending on the characteristics of the distribution, i.e., of
the terrain points, the skewness and kurtosis factors vary, as
summarized by Table 1 [1].

An iterative algorithm repeatedly removes the point with
the highest elevation until the skewness and kurtosis factors
are equal to the desired values. Figs. 7a and 7b show the
ground and nonground points, respectively, resulting from
the interactive segmentation.

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 659

Fig. 5. The filtering is performed in two steps: normal-based optimization
using graph cuts for smoothing the normals and point-based gradient-
descent optimization for smoothing the points using the smooth normals.
(a) Initial point map, (b) Initial normal map, (c) Smooth normal map,
(d) Smooth point map, (e) Dot-product between initial and smooth
normal maps, and (f) Euclidian distance between initial and smooth point
maps (normalized).

Fig. 6. Results for different smoothness weights � and different sizes kLk of the normal label set L. (a) Original data, (b) kLk ¼ 17; � ¼ 0:1,
(c) kLk ¼ 17; � ¼ 0:25, (d) kLk ¼ 17; � ¼ 0:5, (e) kLk ¼ 17; � ¼ 0:75, (f) kLk ¼ 17; � ¼ 1:0, (g) kLk ¼ 104; � ¼ 0:1, (h) kLk ¼ 104;
� ¼ 0:25, (i) kLk ¼ 104; � ¼ 0:5, (j) kLk ¼ 104; � ¼ 0:75, (k) kLk ¼ 104; � ¼ 1:0, (l) kLk ¼ 492; � ¼ 0:1, (m) kLk ¼ 492; � ¼ 0:25,
(n) kLk ¼ 492; � ¼ 0:5, (o) kLk ¼ 492; � ¼ 0:75, and (p) kLk ¼ 492; � ¼ 1:0.

4.3.2 Interactive Segmentation

The automatic segmentation performs very well when

dealing with relatively large buildings of high elevations.

However, problems arise when small buildings of low

elevation are present, which is clearly demonstrated in the

result shown in Fig. 7a. Although the majority of the

buildings (about 70 percent) has been successfully classified

as being nonground elements, there are still several

buildings which were misclassified as ground elements

due to their low elevation.

In order to overcome this problem, we also employ an

interactive segmentation based on region growing which

ensures that all the buildings have been correctly classified as

nonground elements, and perform a region growing on a few

user-defined points to segment groups of similar elevation

and orientation (�� ¼ 0:01 (normalized values) and an

orientation threshold of �� ¼ 30o for the results shown).

Fig. 8 shows the resulting ground (Fig. 8b) and nonground

(Fig. 8a) maps after the interactive segmentation.

5 MODELING

The modeling of the buildings from the segmented candidate

points is performed in three steps: building detection, roof-

type identification, and model reconstruction.

5.1 Building Detection

One of the main limitations of airborne LiDAR scanners is

the accurate measurements near discontinuities due to the

rapid change in elevation which often leads to boundaries

with a zig-zag shape. To overcome this problem, the

contours of the detected regions are linearized using

Douglas-Peucker polygonal approximation. In addition, a

series of polygonal Boolean operations are applied to the

boundaries to resolve any inconsistencies produced by

overlaps due to structures on the roofs such as chimneys,

elevator engines, air conditioners, etc.

Automatic building detection. Commonly found build-

ings have simple roofs and consist of planar surfaces. We

exploit this characteristic and employ an automatic method

for the detection of buildings with simple, convex, or

concave roofs. Fig. 9 shows an example of a building with a

concave roof shape. The point with the highest elevation is

automatically extracted from the segmented data and is

used as a starting point for region-growing. As mentioned

previously, a set of polygonal Boolean operations is applied

to the building’s interior and exterior convex hulls in order

to extract the actual boundaries of the building.

Interactive building detection. Although the majority

of the buildings contain linear surfaces which can be

automatically detected, in some cases where the buildings

contain complex and nonlinear surfaces, an interactive

approach is employed for the detection. Currently,

interactive methods rely on user input for the detection

and require the precise marking of the buildings’

boundaries. We relax the requirement for precision

marking and allow the user to roughly specify a set of

control points which define the shape of the buildings.

The spatial position of the user-marked control points is

then refined through a coordinate-wise optimization, as

explained in Sections 5.2 and 5.3.

660 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

TABLE 1
Skewness and Kurtosis Values in Relation

to the Distribution’s Characteristics

Fig. 7. Automatic segmentation into (a) nonground and (b) ground maps.

Fig. 8. Supervised segmentation into (a) nonground and (b) ground
maps.

Fig. 9. Automatic building detection. (a) Building detection. Initial seed
point is displayed in red. (b) Recovered roof boundaries.

5.2 Automatic Identification and Reconstruction
of Linear Roof Types

The identification of building roof-types is an essential part
of the modeling process. In many cases, especially for
complex buildings and low-resolution data, this is still a
very difficult task even for a human operator. We address
this problem and present a novel, extendible parameterized
geometric primitive for the automatic identification of the
most commonly occurring roof-types, as defined in Fig. 10.
In addition, we show how such a primitive parameteriza-
tion can be extended in order to similarly handle other
groups of complex roof-types.

We leverage the symmetry constraints found in man-
made structures and parameterize a geometric primitive
using only two variables. Fig. 10a shows the geometric
structure of the parameterized primitive. By specifying a
local coordinate system, the control points (external points
V0; . . . ; V3 and internal points P0; . . . ; P3) are expressed as
functions of two variables �; � such that

V0 ¼
�
�W

2
;�H

2

�
; V1 ¼

�
W

2
;�H

2

�
; ð10Þ

V2 ¼
�
�W

2
;
H

2

�
; V3 ¼

�
W

2
;
H

2

�
; ð11Þ

P0 ¼
�
��W

2
;��H

2

�
; P1 ¼

�
�
W

2
;��H

2

�
; ð12Þ

P2 ¼
�
�
W

2
; �
H

2

�
; P3 ¼

�
��W

2
; �
H

2

�
; ð13Þ

where W is the width and H is the height of the primitive.

This parameterization allows for the symmetry constraints

to be enforced since a change of a single point will affect all

other points. In order to ensure that all the internal points

P0; . . . ; P3 are always within the area defined by the exterior

points V0; . . . ; V3, the parameters are bound in the range

0 � �; � � 1. By varying the values of the two parameters

�; �, all commonly occurring roof-types can be produced by

a single primitive, as demonstrated in Fig. 10b. This is a

major advantage since it significantly reduces the number

of primitives required to model a scene and allows a single

primitive to be used for the automatic identification of

multiple roof-types.
A nonlinear, bound-constraint minimization is then

performed to find the optimal values of the two variables

�; �, such that Eerror in (14), i.e., the sum of the squared

fitting error of the five planar surfaces, is minimum:

Eerror ¼
XN
n¼0

X
8p2P
ð�p � fð�p; �; �ÞÞ2; ð14Þ

where N is the number of planes (5) and fð:; :; :Þ is a least-

squares fitting function.

Another significant advantage is that the optimization

involves only two unknowns which are bound constraint

due to the condition that 0 � �; � � 1, thus making the

convergence to a solution extremely fast.
During this optimization, a Gaussian mixture model

(GMM) is used to model the distribution of the elevation of

all points p 2 P inside the planar surface boundaries. A

GMM is a superposition of K Gaussian densities of the form

pðxÞ ¼
XK
k¼1

	kNðxj
k;�kÞ; ð15Þ

where each Gaussian density Nðxj
k;�kÞ is called a

component of the mixture and has its own mean
k and

covariance �k. The parameters 	k are called mixing

coefficients for which 	k � 0, and if the individual Gaussian

components are normalized, then

XK
k¼1

	k ¼ 1: ð16Þ

The calculation of the parameters 	 ¼ f	1; . . . ; 	kg,

 ¼ f
1; . . . ;
kg, and � ¼ f�1; . . . ;�kg is performed using

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 661

Fig. 10. The novel parameterized geometric primitive and the types of
roofs automatically identified. (a) Parameterized primitive. (b) The
different roof-types generated by varying the parameters � � (top
view). (c) Flat. (d) Shed. (e) Glabe. (f) Hip. (g) Pyramidal. (h) Mansard.
(i) Saltbox.

an expectation-maximization (EM) algorithm which mini-

mizes the log of the likelihood function given by

ln pðXj	;
;�Þ ¼
XN
n¼1

ln
XK
k¼1

	kNðxnj
k;�k

()
; ð17Þ

where X ¼ fx1; . . . ; xNg are our data samples, i.e., elevation.
The advantage of using a GMM for the classification of

the points is that it can better separate the outlier points

produced by objects such as elevator engines, air condi-

tioners, and chimneys (which are commonly found on the

roofs), thus removing the otherwise significant bias of those

outliers from the distribution of the true surface points lying

on the roof.
Fig. 11a shows an example of a building with several

objects of different elevation located on the roof. The

dominant component (the component with the highest

mixture coefficient of the GMM—G0 in Fig. 11c) is used to

classify all the points whose probability is maximized in

this distribution as the true surface points Pinliers 2 P and

everything else as outliers Poutliers 2 P . Fig. 11b shows

all the points inside the detected boundaries being color-

coded based on the distribution that maximizes their

probability. Red points have the highest probability in

G0—which is the most dominant component, green points

in G1, and blue points in G2. Using only the inlier points,

(14) now becomes

Eerror ¼
X5

n¼0

X
8p2Pinliers

ð�p � fð�p; �; �ÞÞ2: ð18Þ

This classification using the GMMs has the effect of making

the plane fitting more robust and less susceptive in the

presence of outliers. This greatly improves the performance

of the optimization as well as the accuracy of the

reconstructed surfaces.

An example is shown in Fig. 12a where the detected
boundaries are shown in red and the automatically
recovered interior boundaries produced by the optimiza-
tion are shown in yellow. Note that even for a human
operator, it is hard to identify the roof-type of these
buildings from Fig. 12a. The reconstructed buildings are
shown in Fig. 12b, overlaid to the original data. Figs. 12c
and 12d show different roof-types successfully identified by
the primitive.

A saltbox roof-type is shown in Fig. 13a and the
automatic identification result using the parameterized
primitive is shown in Fig. 13b. Due to the symmetry
constraints, the roof is divided into three planes instead of
the actual two planes. However, this does not affect the
visual appearance of the reconstructed model since the two
lower planes shown in Fig. 13b with white arrows are
coplanar. An example of a shed roof is shown in Fig. 13c
and the automatically reconstructed model in Fig. 13e.
Similarly, the two planes in this case are coplanar due to the
symmetry constraints. In addition, in this example, any
value for �; � is a global minimum since the roof surface is
flat and all planes will be coplanar.

Fig. 13f shows an example of a complex twin gable roof-
type. Although the primitive was not designed to handle
such roof-types, the minimization successfully converges to
the single gable shape. This demonstrates the robustness of
the parameterized primitive and effectiveness in handling
even complex cases where the roof shape significantly
deviates from the shapes in Fig. 10.

In this work, we focus on identifying the most
commonly occurring roof-types which can be handled
entirely by the previously described primitive. However,
such a parameterization can be extended to handle other

662 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 11. Example classification of points using a Gaussian mixture model
consisting of three components. (a) Roof cluttered with objects. (b) Point
classification (G0-red, G1-green, G2-blue). (c) The values of the GMM
for (a).

Fig. 12. Automatic roof-type identification using the parameterized
geometric primitive. (a) Detected boundaries (red lines) and recovered
interior boundaries (yellow lines). (b) Reconstructed building from
a overlaid on original data (Gable roof-type). (c) Hip roof-type.
(d) Pyramidal roof-type.

groups of complex linear roof-types and basic building

blocks L, H, U, and T, as described by Schmitt [18]. Fig. 14

shows a parameterized primitive which can identify all

variants of L-shaped roof-types. This parameterization

includes only four parameters �; �; �; � subject to 0 �
�; �; �; � � 1, and it subdivides the space into six planes

�1...7. The external and internal control points are again

expressed as a function of the four parameters �; �; �; � and

the structural parameters width w and height h as shown

below. Similarly, more parameterized primitives can be

created or combined in order to handle more complex

groups of roof-types:

V1 ¼
�
� w1

2
;�h

2

�
; V2 ¼

�
w1

2
;�h

2

�
; ð19Þ

V3 ¼
�
w1

2
;
h

2
� h2

�
; V4 ¼

�
w

2
;
h

2
� h2

�
; ð20Þ

V5 ¼
�
w

2
;
h2

2

�
; V6 ¼

�
�w1

2
;
h

2

�
; ð21Þ

P1 ¼
�
��w1

2
;�� h

2

�
; P2 ¼

�
�
w1

2
;�� h

2

�
; ð22Þ

P3 ¼
�
�
w1

2
; �

�
h

2
� h2

��
; and

P
0

3 ¼
�
��
�
w

2
� w1

�
;�� h2

2

�
;

ð23Þ

P4 ¼
�
�
w

2
;�� h2

2

�
; P5 ¼

�
�
w

2
; �
h2

2

�
; ð24Þ

P6 ¼
�
��w1

2
; �
h

2

�
; and P

0

6 ¼
�
�� w

2
; �
h2

2

�
: ð25Þ

5.3 Polygonal Primitive

In addition to the automatic parameterized primitive, we

introduce a flexible polygonal primitive for the reconstruc-

tion of complex linear surfaces and buildings. An important

advantage of the polygonal primitive is that it generalizes

the reconstruction such that single surfaces, i.e., parts of a

roof (singular case) as well as entire buildings can be

reconstructed using the same primitive.
Based on connectivity information automatically derived

from the interactively defined control points, a singular or

complex primitive is initialized on the fly. Linear surfaces

with similar control points or sharing edges are integrated

together in a single primitive. Thus, entire buildings are

optimized as single objects with shared geometry (points and

edges, thus reducing the number of unknowns) rather than

optimizing the different roof surfaces separately, which has

the significant consequence that the reconstructed poly-

gonal models are watertight and do not contain any

misalignments between neighboring surfaces.
The process is repeated as part of a coordinate-wise

optimization which refines the spatial position of the

control points.

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 663

Fig. 13. Automatic roof-type identification using the parameterized
geometric primitive. (a) Saltbox roof-type. (b) Automatic identification
result. The lower two planes are coplanar. (c) Shed roof-type. (d) Any
solution for �; � is a global minimum. The two planes are coplanar.
(e) Reconstruction in 3D. The yellow plane indicates a selection.
(f) Complex twin gable roof. (g) Best identification found.

Fig. 14. A parameterized primitive for the identification of all L-shaped
roof-type variants. O1; O2 are the local origins for the two subdivided
rectangles. The red lines indicate where the parameters �; �; �; � are
equal to zero, respectively. The shaded area shows overlap between the
two parameterized rectangles. The points P3; P6 are parameterized with
�; � as well as �; �.

Fig. 15 shows examples of a variety of buildings

extracted using the polygonal primitive. Fig. 15a shows

the reconstructed model returned by a single primitive of a

building containing nine surfaces. As explained before, the

optimization minimizes the error function given by

Eerror ¼
X9

n¼0

X
8p2Pinliers

ð�p � fð�p; �; �ÞÞ2 ð26Þ

for all nine surfaces together. This reduces the number of

parameters in the optimization which subsequently im-

proves the computational time of the reconstruction.
The example of the complex building shown in Fig. 15c

was reconstructed with four complex polygonal primitives.

The tower and flat buildings were reconstructed using the

parameterized primitive. Similarly, Fig. 15d shows an area

reconstructed using singular and complex polygonal primitives.

5.4 Semiautomatic Nonlinear Roof-Type
Reconstruction

The reconstruction of 3D models is performed using the two

linear primitives (parameterized primitive and the polygonal

primitive), as previously explained, to produce a watertight,

lightweight polygonal geometric model of the scene. Despite

the fact that the two linear primitives can model most of the

buildings found in an urban area, they are limited to handling

linear surfaces and cannot be used for the identification of

complex buildings containing nonlinear surfaces such as

domes, stadiums, etc. Therefore, an interactive semiauto-

matic approach is employed for the identification and

reconstruction of such complex buildings.

An ellipsoidal primitive is designed to handle all types of

nonlinear surfaces either dome-like or stadium-like (hol-

low) by fitting an ellipsoid to the data. The primitive is

initialized with the centroid and two perpendicular points

on the surface’s perimeter used to determine � and � in

(27). A nonlinear optimization is then performed to recover

the optimal value for the single unknown variable � such

that (27) is minimized as

x2

�2
þ y

2

�2
þ z

2

�2
¼ 0: ð27Þ

Fig. 16a shows an arena with a dome-like nonlinear roof

reconstructed using this primitive. Similarly, Fig. 16b shows

a stadium-like structure being overlaid on the original data.

The system automatically determines what type of surface

is being reconstructed and automatically chooses the

orientation of the surface type, i.e., dome or stadium-like.

6 PHOTOREALISTIC TEXTURE GENERATION

The generation of photorealistic textures is performed in
two steps: registration of imagery to the reconstructed
model and texture composition.

6.1 Registration

The goal of the registration is to recover the camera

projection matrix which is expressed in terms of the

intrinsic and extrinsic parameters of the camera

C ¼
� ��cotð�Þ u0

0 �
sinð�Þ v0

0 0 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intrinsic

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extrinsic

; ð28Þ

where � ¼ kfx and � ¼ kfy, ðfx; fyÞ are the focal length on

the x- and y-axis, respectively, � is the skew angle, u0; v0 is

the principal point on the x and y-axis, respectively, and

r1�3; t1�3 determine the camera’s rotation and translation

relative to the world.

Various methods have already been proposed for the

estimation of these parameters. However, when dealing

with images from multiple sensors, it is often required to

use various methods for the recovery of the matrix C

depending on the type and characteristics of the images.

6.1.1 Registration of Ground Images

The camera model of (28) is used to recover the camera pose
for ground images. A set of user-specified correspondences

664 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 15. Different types of buildings extracted using the polygonal
primitive. (a) Complex building with sloped surfaces extracted using one
complex polygonal primitive consisting of nine planar surfaces.
(b) Building from (a). The optimization included all surfaces (nine) and
shared the same control points shown in green. (c) Complex building
extracted using four complex polygonal primitives. (d) An area contain-
ing complex buildings reconstructed using the polygonal primitive.

Fig. 16. Reconstruction of nonlinear structures. (a) Dome-like structure.
(b) Stadium-like structure.

between the images and the reconstructed model is

required, and the camera parameters are calculated using

a linear least-squares method. In cases where there are not

enough correspondences between the image and the model,

vanishing points are used for estimating the parameters. A

bundle adjustment optimization finally refines the camera

parameters, thus improving the overall accuracy of the

alignment. Fig. 17a shows ground images being aligned to a

reconstructed model of a building. The blue marks are

areas of unwanted textures (trees and light-post) which are

discussed later.

6.1.2 Registration of Satellite and Aerial Images

Satellite and aerial images have weak perspective and are

often produced by stitching together several perspective

images. The camera model of (28) cannot be used to deal

with multiperspective images and will most definitely fail.

However, this type of images can be rectified by using

vanishing points to recover the extrinsic parameters of

the camera (rotation and translation). Additional user

specified correspondences can then be used to compute a

homography between the rectified image and the model.

Fig. 17b shows the registration of an aerial image. The

model is then back-projected (yellow lines) in the image

for visual verification.

6.2 Texture Composition

The texture composition is performed by integrating the
appearance information of all registered images to create
view-independent, seamless textures. A key aspect of this
integration is the efficient and effective recovery of texture
information for occluded and missing areas. The generation
of the composite textures involves three steps: scene
preprocessing, computation of the texture map resolution,
and rendering and packing.

6.2.1 Scene Preprocessing

A view-dependent-based subdivision is first applied to the
model to ensure that all surfaces are entirely visible in all
images. For each image, a visibility check is performed and
the following actions are taken:

1. A surface which is entirely visible in the image
remains unchanged.

2. A partially visible surface is clipped at the boundary
of the projection of the image plane.

3. A nonvisible (or backfacing) surface remains un-
changed.

Fig. 18a shows an example of the visibility clipping. The
cube is clipped at the projected boundary of the first image
plane, and similarly, the cylinder is clipped at the projected
boundary of the third image. This ensures that all surfaces
are entirely visible in all images, which is imperative for the
correct computation of the texture map resolutions.

6.2.2 Texture Map Resolution

A surface may appear in multiple images with different
resolutions. To ensure minimal information loss and sharp
textures, the resolution of a texture map is chosen to be the
size of the projected polygon with the largest area in image
space. Fig. 18b shows each surface (red polygons) projected
into three image planes. The dimensions of the polygon
with the largest area are chosen as the resolution of the
texture map for the surface. Surfaces which are backfacing
or are not visible in any of the images are automatically
assigned a default color.

6.2.3 Rendering and Texture Packing

The composite textures are then rendered using ray tracing.
For each point on the surface, a ray is cast to the image
planes. A point on the surface is visible in an image if there
is no other surface intersecting the ray casted from the point

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 665

Fig. 17. Registration of ground, aerial, and satellite. (a) Registration of
two ground images. The blue areas indicate occluded areas which will
be recovered by the texture composition. (b) Camera pose recovery of
aerial image. Projective texture maping is used to project the image on
the reconstructed models for visual verification.

Fig. 18. Visibility clipping and texture map resolution computation.
(a) Visibility-based clipping and (b) texture map resolution.

to the image plane. If the point is visible in an image, then

the corresponding pixel color is retrieved and weighted

based on the following criteria:

1. The distance of the pixel to the image boundary:
Pixels which are close to the edges receive a lower
weight than pixels located in the middle. This is
required in order to hide any stitching effects
between images, and reduce the artifacts introduced
when blending multiple images.

2. The angle between the camera’s direction and the
surface’s normal: Images taken from oblique angles
are down-weighted since they have a higher degree
of perspective distortion.

3. The distance of the pixel from the principal point:
Pixels which are further away from the principal
point exhibit higher radial distortion. Although the
radial distortion coefficients can be closely approxi-
mated and used to undistort the image, we have
found that it is more likely to have misalignments
between images at points further away from the
principal point.

4. The resolution of the image: High-resolution images
capture higher level of detail than low-resolution
images; therefore, they are preferred.

The composite texture maps are finally sorted based on

their resolution and are packed into a texture atlas. The

process transforms the texture space of each map, thus

requiring the recalculation of the texture coordinates for the

models in the scene.
As previously mentioned, the rendering pipeline has the

significant advantage that multiple information is integrated

for the generation of the textures, thus allowing the efficient

and correct handling of occluded and missing areas. An

example was shown Fig. 17a where the occluded areas were

indicated with a blue color. The composite textures produced

for that building are shown in Fig. 19. The blue masked areas

which indicated occluded areas due to the presence of a tree

and a light-post are successfully recovered.
Another example of a textured building is shown in

Fig. 20a. The composite textures were generated using a set

of three ground images. In this case, building details such as

the window intrusions are not modeled, thus causing

perspective distortion effects, as shown in Fig. 20b. These

effects become even more dramatic as the angle between the

camera viewing direction and surface orientation increases.

This is the main reason for the use of the second criterion

during the weight computation.

7 EXPERIMENTAL RESULTS

Fig. 21 shows a large-scale virtual environment created with
the proposed approach. The models in Fig. 21b were
reconstructed from the original data in Fig. 21a. Fig. 22a
shows the model textured with high-resolution (4 K) satellite
imagery, and Fig. 22b shows an area in the scene with
textures generated from satellite, aerial, and ground imagery.
A novel viewpoint render of the complete environment
using satellite imagery is shown in Fig. 23.

8 EVALUATION

The qualitative evaluation of the reconstructed 3D models is
very difficult since there is no ground truth for comparison.
In our work, we use the following criteria for the qualitative

666 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

Fig. 19. Recovery of occluded areas. Areas which are not visible by any

camera and therefore no texture information is available appear as

black.

Fig. 21. Reconstructed virtual environment. (a) Original LiDAR data.
(b) Reconstructed models of USC campus overlaid on original data.

Fig. 20. The composite textures of this building model were generated
using three high-resolution ground images. (a) Novel view point render.
(b) Perspective distortion effects due to unmodeled geometry.

and quantitative evaluation of the reconstructed models in
terms of the following parameters:

1. Model accuracy: The accuracy is measured by over-
laying the reconstructed models on the original
LiDAR data (Fig. 24a). We quantitatively evaluate
the models by measuring the deviation of the fitted
surfaces to the actual data. In addition, a qualitative

evaluation is also performed by visually inspecting
the model for any artifacts such as misalignments
between neighboring surfaces and inconsistencies
between the surfaces and the original data.

2. Realistic representation and level of detail (Fig. 24b): We
employ georeferencing for the evaluation of the
realistic representation and the level of detail cap-
tured by our building models. Satellite, aerial, and
ground imagery linked to geospatial locations are
projected on the reconstructed model. The deviation
of the back-projected 3D features from the 2D features
in the images (measured as RMS) provides an
estimate of the accuracy of the representation of the
reconstructed models and the level of detail captured
by the model. A noticeable shortcoming of our
models is the lack of facade details and the failure
to accurately represent the geometric structures such
as window extrutions, indentations, etc. This is due to
the fact that the models are derived from airborne
LiDAR which cannot record any information about
structures located perpendicular to the scanning
direction such as buildings’ facades.

3. Scalability: The scalability is measures in terms of the
average time required for the reconstruction of the

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 667

Fig. 22. Textured virtual environment. (a) Entire area textured with high-
resolution (4,000) satellite imagery. (b) A reconstructed area with
textures from satellite, aerial and ground imagery.

Fig. 23. A large-scale virtual environment rapidly created using the proposed approach.

Fig. 24. (a) Evaluation of model accuracy. Model overlaid on original
data. (b) Evaluation of realistic representation and level of detail. Aerial
image projected on reconstructed building models.

building models. Our experiments show that the
required time is based on the complexity of the
buildings and the primitives employed. Table 2
indicates the time required for the reconstruction of
average-sized buildings, i.e., occupying an area of
up to 1,000 pixels. The parameterized primitive
refers to the flat, shed, gable, hip, pyramidal,
mansard, and saltbox roof-types.

9 CONCLUSION

We have presented a novel and complete approach for
the rapid creation of photorealistic large-scale virtual
environments.

First, we resolved the 3D model reconstruction problem
using a novel parameterized geometric primitive for the
automatic identification and reconstruction of building
models. This primitive significantly reduces the number
of user interaction and increases the computational speed of
the reconstruction process by exploiting common symmetry
constraints found in man-made structures. In addition,
buildings containing complex linear and nonlinear surfaces
are interactively reconstructed using a linear polygonal and
nonlinear primitive, respectively.

Second, we resolved the problem of texturing and
presented a rendering pipeline for the composition of
photorealistic textures which allows for the effective
handling of missing or occluded areas. The result is a set
of view-independent, seamless textures which are compos-
ited from images captured from multiple sensors (ground,
aerial, and satellite).

APPENDIX: GRAPH CUTS

In [3], [2], the authors interpret image segmentation as a
graph partition problem. Given an input image I, an
undirected graph G ¼ <V ;E> is created, where each vertex
vi 2 V corresponds to a pixel pi 2 I and each undirected
edge ei;j 2 E represents a link between neighboring pixels
pi; pj 2 I. In addition, two distinguished vertices called
terminals Vs; Vt, are added to the graph G. An additional
edge is also created connecting every pixel pi 2 I and the
two terminal vertices ei;Vs and ei;Vt . For weighted graphs,
every edge e 2 E has an associated weight we.

A cut C � E is a partition of the vertices V of the graph G
into two disjoint setsS,T , whereVs 2 S andVt 2 T . The cost of
eachcutC isthesumoftheweightededgese 2 Candisgivenby

jCj ¼
X
8e2C

we: ð29Þ

The minimum cut problem can then be defined as finding

the cut with the minimum cost. An algorithm for solving this

problem has been proven to require polynomial time [3].
Energy minimization function. Finding the minimum cut

of a graph is equivalent to finding an optimal labeling f :

I �! L which assigns a label l 2 L to each pixel p 2 I, and f

is piecewise smooth and consistent with the original data.

The energy function is then given by

EðfÞ ¼ EdataðfÞ þ � � EsmoothðfÞ; ð30Þ

where � is the weight of the smoothness term.
Energy data term. The data term in (30) measures the

cost of relabeling the original data with a new labeling f . It

is defined as the sum of the per-pixel measure (Dp) of how

appropriate each label fp�!l 2 L is for each pixel p 2 I in

the original data and is given by

EdataðfÞ ¼
X
p2I

DpðfpÞ: ð31Þ

Energy smoothness term. The smoothness term in (30)

measures the cost of relabeling neighboring pixels with a

new labeling f . It is defined as the sum of the differences

between two neighboring pixels p; q 2 I under a labeling

fp�!lp 2 L and fq�!lq 2 L, respectively, and is given by

EsmoothðfÞ ¼
X
fp;qg2N

Vfp;qgðfp; fqÞ; ð32Þ

where N is the set of neighboring pixels and Vfp;qg measures

the difference between the neighboring pixels, also known

as the interaction potential function.

ACKNOWLEDGMENT

The authors would like to thank the Airborn1, Inc., for

providing them with the University of Southern California

(USC) campus LiDAR data. They acknowledge the mem-

bers and Professor Ulrich Neumann in the Computer

Graphics and Immersive and Technologies (CGIT) labora-

tory of USC. They also thank the reviewers for their

valuable comments and suggestions.

REFERENCES

[1] M. Bartels, H. Wei, and D.C. Mason, “DTM Generation from
LIDAR Data Using Skewness Balancing,” Proc. Int’l Conf. Pattern
Recognition (ICPR ’06), pp. 566-569. 2006.

[2] Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal
Boundary and Region Segmentation of Objects in N-D Images,”
Proc. Int’l Conf. Computer Vision (ICCV ’01), pp. 105-112, 2001.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” Proc. Int’l Conf. Computer Vision
(ICCV ’99), pp. 377-384, 1999.

[4] P. Debevec, C. Tchou, A. Gardner, T. Hawkins, C. Poullis, J.
Stumpfel, A. Jones, N. Yun, P. Einarsson, T. Lundgren, M. Fajardo,
and P. Martinez, “Estimating Surface Reflectance Properties of a
Complex Scene under Captured Natural Illumination,” Technical
Report, Univ. of Southern California, ICT, 2004.

[5] P.E. Debevec, C.J. Taylor, and J. Malik, “Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry- and Image-
Based Approach,” Proc. ACM Conf. Computer Graphics, pp. 11-20,
Aug. 1996.

[6] R.O. Duda and P.E. Hart, Pattern Classification. John Wiley and
Sons, 2000.

668 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

TABLE 2
Scalability: Processing Time Required for the

Reconstruction of Average-Sized Building Models

[7] C. Früh and A. Zakhor, “Constructing 3D City Models by Merging
Ground-Based and Airborne Views,” Computer Vision and Pattern
Recognition, pp. 562-569, 2003.

[8] J. Hu, S. You, and U. Neumann, “Approaches to Large-Scale
Urban Modeling,” IEEE Computer Graphics and Applications,
vol. 23, no. 6, pp. 62-69, 2003.

[9] S.C. Lee, S.K. Jung, and R. Nevatia, “Automatic Pose Estimation of
Complex 3D Building Models,” Proc. IEEE Workshop Application of
Computer Vision (WACV ’02), pp. 148-152, 2002.

[10] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. ACM
SIGGRAPH ’96, pp. 31-42, 1996.

[11] A.R. Martinez and G. Drettakis, “View-Dependent Layered
Projective Texture Maps,” Proc. Pacific Conf. Computer Graphics
and Applications, pp. 492-496, 2003.

[12] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.M. Frahm,
R.G. Yang, D. Nister, and M. Pollefeys, “Real-Time Visibility-
Based Fusion of Depth Maps,” Proc. Int’l Conf. Computer Vision,
pp. 1-8, 2007.

[13] R. Nevatia and K.E. Price, “Automatic and Interactive Modeling of
Buildings in Urban Environments from Aerial Images,” Proc. Int’l
Conf. Image Processing (ICIP ’02), vol. 3, pp. 525-528, 2002.

[14] M. Pollefeys, L.J.V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual Modeling with a Hand-Held
Camera,” Int’l J. Computer Vision, vol. 59, no. 3, pp. 207-232, 2004.

[15] C. Poullis, A. Gardner, and P. Debevec, “Photogrammetric
Modeling and Image-Based Rendering for Rapid Virtual Environ-
ment Creation,” Proc. Army Science Conf., pp. I: 1-7, 2004.

[16] C. Poullis, S. You, and U. Neumann, “Rapid Creation of Large-
Scale Photorealistic Virtual Environments,” Proc. IEEE Virtual
Reality Conf., pp. 153-160, 2008.

[17] D.P. Robertson and R. Cipolla, “Building Architectural Models
from Many Views Using Map Constraints,” Lecture Notes in
Computer Science, vol. 2351, pp. 155-163, 2002.

[18] G. Schmitt, Architectura et Machina. Vieweg & Sohn, 1993.
[19] G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM SIGGRAPH

’01, pp. 347-354, 2001.
[20] S. You, J. Hu, U. Neumann, and P. Fox, “Urban Site Modeling

from liDAR,” Proc. Int’l Conf. Computational Science and Applica-
tions, 2003.

[21] C. Zach, T. Pock, and H. Bischof, “A Globally Optimal Algorithm
for Robust TV-L1 Range Image Integration,” Proc. Int’l Conf.
Computer Vision, pp. 1-8, 2007.

Charalambos Poullis received the BSc degree
in computing information systems from the
University of Manchester, UK, in 2001, and the
MSc degree in 2003 in computer science with
specialization in multimedia and creative tech-
nologies from the University of Southern Cali-
fornia (USC), where he is currently working
toward the PhD degree in computer science. His
area of expertise is computer vision, computer
graphics, virtual reality, and in particular large-

scale modeling, photorealistic rendering, and 3D visualization meth-
odologies. He is currently working as a researcher at the Computer
Graphics and Immersive Technologies Laboratory at USC and a
teaching assistant at the Computer Science Department for graduate
classes. He is a student member of the ACM and the IEEE, and has
served as a reviewer in several conferences and journals.

Suya You received the PhD degree from
Huazhong University of Science and Technol-
ogy, China, in 1994. He is a research assistant
professor in the Computer Science Department,
University of Southern California (USC). His
expertise is in the fundamental and applied
aspects of digital media processing and applica-
tions. He also holds research positions at the
Integrated Media Systems Center (IMSC), a US
National Science Foundation (NSF) Engineering

Research Center (ERC) at USC, and the Center for Interactive Smart
Oilfield Technologies (CISOFT), a USC-Chevron Center of Excellence
for Research and Academic Training on Interactive Smart Oilfield
Technologies. His current research focuses on the mobile augmented
reality, large-scale scene modeling and visualization, game technique
for simulation and training, and multisensor data fusion for remote
operations. He is the author or coauthor of more than 100 papers, and a
coholder of several patents and technology disclosures in these areas.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

POULLIS AND YOU: PHOTOREALISTIC LARGE-SCALE URBAN CITY MODEL RECONSTRUCTION 669

