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Abstract: Spatial Augmented Reality, or its more commonly known name Projection Mapping (PM), is a projection tech-
nique which transforms a real-life object or scene into a surface for video projection (Raskar et al., 1998b).
Although this technique has been pioneered and used by Disney since the seventies, it is in recent years
that it has gained significant popularity due to the availability of specialized software which simplifies the
otherwise cumbersome calibration process (Raskar et al., 1998a). Currently, PM is being widely used in ad-
vertising, marketing, cultural events, live performances, theater, etc as a way of enhancing an object/scene by
superimposing visual content (Ridel et al., 2014). However, despite the wide availability of specialized soft-
ware, several restrictions are still imposed on the type of objects/scenes on which PM can be applied. Most
limitations are due to problems in handling objects/scenes with (a) complex reflectance properties and (b) low
intensity or distinct colors. In this work, we address these limitations and present solutions for mitigating these
problems. We present a complete framework for calibration, geometry acquisition and reconstruction, esti-
mation of reflectance properties, and finally color compensation; all within the context of outdoor long-range
PM of stereoscopic content. Using the proposed technique, the observed projections are as close as possible
[constrained by hardware limitations] to the actual content being projected; therefore ensuring the perception
of depth and immersion when viewed with stereo glasses. We have performed extensive experiments and the
results are reported.

1 INTRODUCTION

Many successful techniques have been devel-
oped for capturing and modeling the shape and re-
flectance properties of objects/scenes (Torrance and
Sparrow, 1967), (Phong, 1975), (Oren and Nayar,
1995), (Lafortune et al., 1997). These have been par-
ticularly successful in cases where the acquisition is
performed under controlled lab conditions without the
presence of any dynamic elements. Although PM can
also be used indoors in a similar fashion, the majority
of its applications involve large-scale and/or outdoor
objects/scenes. Perhaps the only work reported in the
literature to address the capture of complex geometry
and the estimation of reflectance properties of outdoor
objects is by Debevec et al. (Debevec et al., 2004).

In an outdoor setting there are several challenges:
(a) there is no control over the lighting, (b) there is no
control over other dynamic elements which may be
present in the scene e.g. people walking, cars pass-
ing by, clouds, rain, etc, (c) most often limited time is

available to perform the capture because of the afore-
mentioned challenges. An example of one of our out-
door projection mapping experiments is shown in Fig-
ure 1(a). The viewers were wearing stereo glasses
in order to perceive depth since the projected content
was stereoscopic, as shown in Figure 1(b). Objects
with complex reflectance properties such as the win-
dows and columns are not specifically handled during
the projection and resulted in color distortions to the
red-cyan stereo content which further caused the loss
of depth perception and some noticeable visual arti-
facts.

In this paper, we address the problem of long
range projection mapping of stereoscopic content on
outdoor areas and propose a complete framework
which automates the following processes: (a) system
calibration, (b) structure and appearance information
acquisition, (c) approximating model of projection
surface’s reflectance properties, (d) color compensa-
tion to the extent possible with the given projection
surface. The result is compensated image/video con-



(a)

(b)

Figure 1: (a) The facade of the Roman Baths, UK. (b)
Stereoscopic content being projected onto the facade.

tent such that its projection onto the particular surface
will produce an image/video which, when viewed,
will seem as close to the original as possible. This
is, of course, limited by the projection surface prop-
erties, as it may not always be possible to completely
compensate for the surface reflectance behavior.

The paper is organized as follows: Section 2 gives
an overview of the state-of-the-art in the area and Sec-
tion 3 presents a technical overview of the proposed
framework. In Section 4 we discuss the calibration
of the cameras and the projector with respect to each
other, and compute both extrinsic and intrinsic param-
eters for them. Next, Section 5 describes the geometry
acquisition. The reflectance properties are modelled
to their best approximation as described in Section 6.
Lastly, Section 7 presents the color compensation and
illustrative experimental results are provided in Sec-
tion 8.

2 Related Work

R. R. Garcia and A. Zakhor (Garcia and Zakhor,
2013) calibrated a multi-camera-projector system to
set up a multi-view structure light. By taking the ad-
vantage of binary codes they encode each projector
pixel. By projecting the patterns on a screen and cap-
turing the images sequence by the cameras and de-
coding the binary codes, they generate dense corre-
spondences between the cameras and projector. Bun-
dle adjustment is performed to calibrate the system.
Svoboda et al. (Svoboda et al., 2005) also proposed a
fully multi-camera self-calibration method for virtual
environments. They wave a detectable bright spot in
the working volume and capture the volume with at
least three synchronised cameras. These points are
validated through pairwise epipolar constraints. They
calibrate the system by using these correspondences.

3D reconstruction is a well-studied area in com-
puter graphics. Many techniques are proposed and
many commercial products are available on the mar-
ket. Microsoft Kinect is one of the most popular de-
vices and comes with game consoles. It is able to scan
the scene/object with high accuracy in short range. Y.
Furukawa and J. Ponce (Furukawa and Ponce, 2010)
proposed an algorithm to reconstruct an object/scene
by using calibrated multi-view stereo. The algorithm
detects feature points of each image and then finds the
matches between each pose and outputs a dense set of
patches covering the surface of the object/scene.

The diffuse component and specularity or reflec-
tion component of the scene is a very important issue
in computer graphics, computer vision and in general
vision systems. Typically, techniques try to first de-
tect the specularity of the scene and then cancel or
reject them as an outlier. Several methods with differ-
ent viewpoints proposed to tackle this problem, Sin-
gle image techniques and multiple image techniques
have been proposed to extract diffuse map and specu-
lar map of the scene. Lin et al. (Lin et al., 2002) pro-
posed a color-based method to identify and separate
specular component from an input image sequence
by using a multi-baseline stereo system. Fries et al.
(Feris et al., 2004) proposed a multi-flash method to
achieve this separation. They used a fixed camera and
a varying flashlight to capture images of the scene
with different light source positions. Seitz et al.(Seitz
et al., 2005) proposed a method for the cancellation
of n-bounced inter-reflection light. In this, they first
proved the existence of a set of linear operations by
applying the inverse light transportation theory. Then,
by probing the scene using a very narrow beam of the
light, can compute the operators. Michael D. Gross-
berg et al. (Grossberg et al., 2004) introduced an im-



proved radiometric model to control the appearance
of an object in short-range. By using a camera and a
projector, they try to make the captured image similar
to the projected image.

The above techniques have been largely applied
to short-range capture and monocular projection. The
work reported in this paper is mainly concerned with
long range and stereoscopic projection. We present
our investigations in extending the above techniques
and/or development of new techniques, as may be
needed, due to the new problems posed by long-range
capture, calibration and projection.

3 System Overview

An overview of our system is shown in Figure 2.
In the first stage, the system is calibrated. This in-
cludes calibration of the individual cameras, calibra-
tion of each camera with respect to other cameras,
and the calibration of the projector with respect to
the cameras. Next, the geometry of the projection
surface is captured using a structured-light scanning
technique. Using the images and geometry of the
surface, the reflectance properties at each point are
estimated. Surface points with complex reflectance
properties i.e. transparent or translucent are identi-
fied. Finally, the original stereoscopic content is com-
pensated to account for the reflectance properties of
the projection surface prior to projecting it on the sur-
face.

4 System Calibration

Accurate calibration is of imperative importance
when dealing with long-range vision-projection sys-
tems, such as in this case. A small error in image
space i.e. pixels, can lead to vast displacements in
the projected space. In this section we describe our
system calibration process, which involves:

• the calibration of the cameras

• the pose recovery with respect to the cameras and
intrinsic parameter calibration of the projector

4.1 Camera Calibration

Perhaps the most popular technique for calibrating a
camera is the one proposed by Tsai et al. (Tsai, 1987)
and Zhang et al. (Zhang, 2000). Given a set of points
in world space and their corresponding image points,
one can recover both the intrinsic and extrinsic pa-
rameters of the camera. The pinhole camera model is

used to describe these parameters which are specified
by the camera matrix C in equation 1,

C =

 α −αcot(θ) u0

0 β

sin(θ) v0

0 0 1


︸ ︷︷ ︸

intrinsic

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

extrinsic
(1)

where α = k fx, β = k fy, ( fx, fy) is the focal length
on the x and y axis respectively, θ is the skew angle,
u0,v0 is the principal point on the x and y axis respec-
tively and r1−3, tx−z determine the camera’s rotation
and translation relative to the world. Lens distortion
is also taken into account and is modeled by:

D =
[
k1 k3 P1 P2 k3

]
(2)

which Bell et al. (Bell et al., 2016) explained in
their work.An inherent assumption during camera cal-
ibration using the above method is that the captured
images of 3D objects with known calibration, say, a
checkerboard, are in-focus. This is indeed the case
for many applications. However, when dealing with
projection mapping in outdoor areas this is not the
case. The cameras and projector are focused on the
projection surface, which is far away. Calibrating the
system using a traditional technique means that the
checkerboard must be also positioned at the same far
distance. Although this does not pose a physical lim-
itation, it most often leads to inaccurate estimation
of the parameters. The reason being that at greater
distances the checkerboard will only occupy a very
small area of the captured image, therefore making
the distribution of world-image correspondences de-
generate. This leads to erroneous calculations. In par-
ticular, distortion parameters cannot be accurately re-
covered in the case where the captured images of the
checkerboard do not provide good coverage across the
entire area covered by the camera. In order to over-
come this problem, we follow an approach similar to
Tyler Bell et al. (Bell et al., 2016) which, instead of
a calibration object, uses projected patterns which are
by-design robust to out-of-focus cameras.

This method encodes feature points into phase
shifted patterns being displayed on a monitor visible
to the cameras. The feature points can then be accu-
rately decoded even when blurred because this does
not affect the phase of the pattern sequence. One
vertical and one horizontal phase map are required
where each vertical/horizontal line has a unique phase
value. Thus, each pixel appearing on the monitor has
a unique pair of (Φv,Φh) to identify the feature. These
phase maps are carried by the phase shifting patterns.
Equation 3 is used to generate N equally phase-shifted



Figure 2: Pipeline

vertical and horizontal fringe patterns and is given by,

Ii
v(u,v) = 0.5

[
1+ cos(Φv +2iπ/N)

]
,

Ii
h(u,v) = 0.5

[
1+ cos(Φh +2iπ/N)

] (3)

where i is the index of fringe pattern, Φv and Φh
represent the vertical and horizontal phase maps, re-
spectively. Each phase-map is then extracted as fol-
lows,

φ(x,y) = tan−1
[

∑
N
i=1 Ii sin(2iπ/N)

∑
N
i=1 Ii cos(2iπ/N)

]
(4)

where Ii is the intensity of a specific pixel in the
ith captured image. This equation generates a non-
continuous wrapped phase map with values in the
range of [−π,π]. Next, the phase-maps are un-
wrapped to produce a unique phase value for each
of their columns/rows in the pattern. Adding an off-
set to each section of the phase-map generates an un-
wrapped phase-map which has a unique phase value
at each horizontal/vertical pixel line as shown in the
following equation,

Φ(x,y) = φ(x,y)+ k×2π (5)
The process can be summarized as shown in Algo-

rithm 1. Figure 3 shows the encoding of the features
using the vertical and horizontal phase maps.

After decoding of the correspondences, the cam-
era can be calibrated using the traditional technique.
The result is the intrinsic and extrinsic parameters for
each camera. The extrinsic parameters are given with
respect to the first (top-left) encoded feature point in
the monitor.

4.2 Projector Calibration

The projector is treated as an inverted camera and is
calibrated with the traditional method using a set of
2D to 3D correspondences resulting from the geome-
try acquisition. The explanation on the extraction of
the 2D-3D correspondences is deferred to Section 5.
Given a set of 3D world points and their correspond-
ing 2D image locations, the projector’s intrinsic and
extrinsic parameters are recovered.

Algorithm 1: Camera calibration and pose esti-
mation using phase shifting.
1 generate vertical and horizontal fringe patterns
2 display and capture images from monitor at

different poses
3 compute wrapped phase-map
4 calculate k in Equation 5
5 calculate unwrapped phase map
6 match the encoded feature points with the

decoded phase map
7 calibrate camera using the traditional technique

Figure 3: This figure shows the encoding process of the
feature points.

5 Geometry Acquisition

The geometry of the projection surface directly
impacts the appearance of the surface as well as the
projected content. Identifying surface points with
complex reflectance properties requires that the ge-
ometry (surface points and normals), and reflectance
properties (response to light) of the projection surface
are known.

Structured-light scanning (Herakleous and
Poullis, 2014) is used to capture the geometry of the
projection surface. Encoded patterns are projected
onto the surface in sequence. The cameras capture
one image per pattern. These images are decoded



to produce a dense correspondence between the
projector’s pixels and the camera’s pixels. A render
of the reconstructed geometry of the Roman Baths
(Figure 1) is shown in Figure 4. This was generated
from 44 images captured by three cameras.

Figure 4: A render of the reconstructed geometry of the
Roman Bath. 44 images captured by three cameras.

6 Estimation of Surface Reflectance
Properties

As part of the geometry acquisition images are
captured from each camera from different viewpoints.
Each image records the brightness at every visible
surface point from that particular viewpoint. Given
three such measurements per surface point, we ap-
proximate the local reflectance properties.

We use the Phong illumination model, which is a
local illumination model that is easy to compute and
use, to describe the local interactions between the ma-
terial and the light and is given by:

I = Lκd cosθ+Lκs cosφ
α (6)

where I is the brightness of the reflected light as
recorded by the camera, L is the incident radiance
emitted from the projector, Kd is the 3-vector diffuse
reflection coefficient, Ks is the 3-vector specular re-
flection coefficient and α is the shininess coefficient
of the material.

A non-linear optimization (Levenberg, 1944) is
used to compute the optimal values for the material
parameters such that the energy function E( f ) is min-
imized,

E( f ) = Edata( f )+Esmooth( f ) (7)

where Edata( f ), the energy data term and Esmooth( f ),
the energy smoothness term are as defined below.

Energy data term Edata( f ): This term is a measure
of how appropriate the optimized material parameters

are given the observed data and is defined as,

Edata( f ) =
n

∑
i=0
|Ii

r− Ii
m|2 (8)

where n is the number of cameras, Ii
r is the rendered

image as viewed from camera i using the acquired ge-
ometry and the material parameters being optimized,
and Ii

m is the observed image captured by camera i.
Energy smoothness term Esmooth( f ): This term is a

measure of the smoothness between brightness values
in neighbouring pixels of the rendered image and is
given by,

Esmooth( f ) =
n

∑
i=0

[w×h

∑
j=0

[ 8

∑
m
|B j−Bm|2

]]
(9)

where n is the number of cameras, j is the num-
ber of pixels within the rendered image from cam-
era i, m is the 8-neighbourhood around the pixel j,
B j is the brightness at pixel j, and Bm is the bright-
ness at pixel m. This term ensures that the opti-
mal values will provide smooth results. This is illus-
trated in Figure 5 which shows a comparison between
the smoothed/non-smoothed procedures for comput-
ing material coefficients. For the statue in Figure 5a
the specular map without smoothing can be seen in
Figure 5b and with smoothing in Figure 5c. As ev-
idenced, without the smoothness term there is noise
between neighbouring pixels which is removed when
the smoothness term is introduced.

Figure 6 shows the results of the energy minimiza-
tions for three synthetic test/validation cases shown in
Figure 6a: a perfectly specular, a diffuse/specular and
a perfectly diffuse sphere, respectively. Figures 6b,
6c, 6d show the progress of error minimization corre-
sponding to the shininess, diffuse and specular coeffi-
cient respectively.

7 Color Compensation

Changes in the appearance of the projected con-
tent caused by the reflectance properties of the pro-
jection surface need to be compensated. We use the
estimated geometry and reflectance properties at each
surface point to compensate the content prior to its
projection. For each frame of the stereoscopic content
to-be-projected we calculate the compensated projec-
tor’s brightness Lp for each pixel p as follows,

Lo = Lp
[
κdcos(θ)+κscos(φ)α

]
Lp =

Lo[
κdcos(θ)+κscos(φ)α

] (10)



(a) (b) (c)
Figure 5: (a) The object/projection surface. (b) The estimation of the specular parameters without the smoothness term and
(c) the estimation with the smoothness term.

where Lo is the original image’s brightness value
at pixel p, Lp is the compensated image which, when
projected on the surface, ideally yields Lo.

Due to the limited range of brightness values the
projector can produce there is a restriction on the col-
ors for which compensation will work.

Further, in this work, the content is stereoscopic
which already uses a limited range of values because
of the anaglyph processing. We have found that this
works well for stereoscopic content being projected
on outdoor surfaces such as building facades where
the surface is primarily diffuse with strong specular
components in the presence of windows, light-fixtures
and other such objects.

As previously mentioned, the reflected color from
the object depends on the material’s reflectance prop-
erties and the emitted light. Knowing the reflectance
properties of each surface point allows us to compen-
sate up to a factor. First, using additive color mix-
ing we calculate an image which when projected can-
cels out [if needed] the colors on the projection sur-
face and makes the surface appear grayish. Next, we
calculate the image which when projected on top of
the ’grayish’ surface will be as close to the original
as possible. The result is the original image with in-
creased brightness and reduced contrast depending on
how bright the grayish image has to be.

8 Experimental results and
Concluding Remarks

The proposed technique has been tested and the
results are presented. All reported results were gener-
ated on an Intel-i7 PC with commodity hardware. The
projector used was a Panasonic PT-VW435N projec-
tor with a native resolution of WXGA 1280× 800.
The statue of Alexander shown in the experiments

has dimensions 25.5cm× 19cm× 14.5cm and was
used for comparison purposes with (Herakleous and
Poullis, 2014).

A 3D print of the Roman Baths was used for ex-
perimentation due to access restrictions on the real
site. These experiments were conducted in relative
scale. Figure 1 shows a projection on the real Roman
Bath’s building. Figure 7a shows a stereoscopic pro-
jection [without compensation] being projected onto
the Roman Baths. Color distortions occurring on the
anaglyph image due to the reflectance properties of
the projection surface have a negative impact on the
depth perception of the viewer. Figure 7b shows the
stereoscopic projection after compensation using the
proposed technique. Color distortions are minimized
by taking into account the effect of the reflectance
properties of the projection surface. The expected
projection is shown in Figure 7c.

The expected projection cannot always be
achieved [as in the above case] because of the limi-
tations of additive color mixing and the hardware. In-
tuitively, a projection surface with a white-ish color
can reflect a larger percentage of the projected light
by the projector, therefore, more colors can be com-
pensated. For example, a bright red color projected
onto a white surface will appear as red. On the other
hand, a projection surface with a darker color will ab-
sorb the projected light; a bright red color projected
onto a dark surface will appear as dark red.

For the immediate future, we will investigate
perception-driven compensation, by attempting to
preserve major visual features. In addition, we will
explore the application of different reflectance mod-
els.
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Figure 6: (a) Three synthetic test cases: perfectly specu-
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cients. (e) Total energy minimization.

Canada under Grant No. SO1936, Concordia Univer-
sity’s Faculty of Engineering and Computer Science
under Grant No. VH0003, and the Concordia Univer-
sity CASA Research Grant No. CS1136.

REFERENCES

Anaglyph image. https://goo.gl/9vSgkP. Ac-
cessed: 2016-11-25.

Bell, T., Xu, J., and Zhang, S. (2016). Method for
out-of-focus camera calibration. Applied optics,
55(9):2346–2352.

Debevec, P., Tchou, C., Gardner, A., Hawkins, T.,
Poullis, C., Stumpfel, J., Jones, A., Yun, N.,
Einarsson, P., Lundgren, T., et al. (2004). Es-
timating surface reflectance properties of a com-
plex scene under captured natural illumination.
Conditionally Accepted to ACM Transactions on
Graphics, 19.

Feris, R., Raskar, R., Tan, K.-H., and Turk, M.
(2004). Specular reflection reduction with multi-
flash imaging. In Computer Graphics and Im-
age Processing, 2004. Proceedings. 17th Brazil-
ian Symposium on, pages 316–321. IEEE.

Furukawa, Y. and Ponce, J. (2010). Accurate, dense,
and robust multiview stereopsis. IEEE trans-
actions on pattern analysis and machine intel-
ligence, 32(8):1362–1376.

Garcia, R. R. and Zakhor, A. (2013). Geometric cal-
ibration for a multi-camera-projector system. In
Applications of Computer Vision (WACV), 2013
IEEE Workshop on, pages 467–474. IEEE.

Grossberg, M. D., Peri, H., Nayar, S. K., and Bel-
humeur, P. N. (2004). Making one object look
like another: Controlling appearance using a
projector-camera system. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society
Conference on, volume 1, pages I–452. IEEE.

Herakleous, K. and Poullis, C. (2014). 3dunderworld-
sls: An open-source structured-light scanning
system for rapid geometry acquisition. arXiv
preprint arXiv:1406.6595.

Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and
Greenberg, D. P. (1997). Non-linear approx-
imation of reflectance functions. In Proceed-
ings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’97, pages 117–126, New York, NY,
USA. ACM Press/Addison-Wesley Publishing
Co.

Levenberg, K. (1944). A method for the solution of
certain non–linear problems in least squares.

https://goo.gl/9vSgkP


(a) (b)

(c) (d)
Figure 7: (a) A stereoscopic projection without compensation. Color distortions due to the reflectance properties of the
projection surface negatively affect the depth perception of the viewer. (b) The stereoscopic projection after compensation
using the proposed technique. Color distortions are minimized by taking into account the effect of the reflectance properties
of the projection surface. (c) The expected projection. This cannot always be achieved due to the limitations of additive color
mixing and the hardware.(d) The original stereoscopic image taken from (ste, )

Lin, S., Li, Y., Kang, S. B., Tong, X., and Shum, H.-
Y. (2002). Diffuse-specular separation and depth
recovery from image sequences. In European
conference on computer vision, pages 210–224.
Springer.

Oren, M. and Nayar, S. K. (1995). Generalization of
the lambertian model and implications for ma-
chine vision. International Journal of Computer
Vision, 14(3):227–251.

Phong, B. T. (1975). Illumination for computer gen-
erated pictures. Communications of the ACM,
18(6):311–317.

Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin,
L., and Fuchs, H. (1998a). The office of the fu-
ture: A unified approach to image-based mod-
eling and spatially immersive displays. In Pro-
ceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, pages
179–188. ACM.

Raskar, R., Welch, G., and Fuchs, H. (1998b). Spa-
tially augmented reality. In First IEEE Workshop
on Augmented Reality (IWAR98), pages 11–20.

Ridel, B., Reuter, P., Laviole, J., Mellado, N., Cou-
ture, N., and Granier, X. (2014). The revealing

flashlight: Interactive spatial augmented reality
for detail exploration of cultural heritage arti-
facts. Journal on Computing and Cultural Her-
itage (JOCCH), 7(2):6.

Seitz, S. M., Matsushita, Y., and Kutulakos, K. N.
(2005). A theory of inverse light transport. In
Tenth IEEE International Conference on Com-
puter Vision (ICCV’05) Volume 1, volume 2,
pages 1440–1447. IEEE.

Svoboda, T., Martinec, D., and Pajdla, T. (2005). A
convenient multicamera self-calibration for vir-
tual environments. Presence, 14(4):407–422.

Torrance, K. E. and Sparrow, E. M. (1967). Theory
for off-specular reflection from roughened sur-
faces. JOSA, 57(9):1105–1112.

Tsai, R. (1987). A versatile camera calibration
technique for high-accuracy 3d machine vision
metrology using off-the-shelf tv cameras and
lenses. IEEE Journal on Robotics and Automa-
tion, 3(4):323–344.

Zhang, Z. (2000). A flexible new technique for cam-
era calibration. IEEE Transactions on pattern
analysis and machine intelligence, 22(11):1330–
1334.


