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ABSTRACT

The rapid and efficient creation of virtual environments has be-
come a crucial part of virtual reality applications. In particular, civil
and defense applications often require and employ detailed models
of operations areas for training, simulations of different scenarios,
planning for natural or man-made events, monitoring, surveillance,
games and films. A realistic representation of the large-scale en-
vironments is therefore imperative for the success of such applica-
tions since it increases the immersive experience of its users and
helps reduce the difference between physical and virtual reality.
However, the task of creating such large-scale virtual environments
still remains a time-consuming and manual work.

In this work we propose a novel method for the rapid recon-
struction of photorealistic large-scale virtual environments. First, a
novel parameterized geometric primitive is presented for the auto-
matic building detection, identification and reconstruction of build-
ing structures. In addition, buildings with complex roofs contain-
ing non-linear surfaces are reconstructed interactively using a non-
linear primitive. Secondly, we present a rendering pipeline for the
composition of photorealistic textures which unlike existing tech-
niques it can recover missing or occluded texture information by in-
tegrating multiple information captured from different optical sen-
sors (ground, aerial and satellite).

Index Terms: [Large-scale Modeling, Texturing, Multiple Sen-
sory input, Photorealistic Virtual Environments]: —

1 INTRODUCTION

Virtual reality technologies are becoming increasingly popular and
are being widely used in a range of different applications. In par-
ticular, civil and defense applications employ such technologies for
the simulation of real world operations areas. In such cases the
models of urban buildings are of significant value since they fa-
cilitate planning, response, and real-time situational awareness in
highly-occluded urban settings [7, 10, 17]. The personnel that sim-
ulate, plan, monitor, and execute responses to natural or man-made
events can gain insight and make better decisions if they have a
comprehensive view of the structures and activity occurring at an
operational scene. The models are essential components of such
a view, helping people comprehend spatial and temporal relation-
ships. In addition, a photorealistic appearance is essential for the
enhancement of the visual richness of the models and the immer-
sive experience of the users [16, 6].

While models are important assets, the creation of photorealis-
tic large-scale models remains at best a difficult, time-consuming
manual task. The science for rapidly sensing and modeling wide-
area urban sites and events, in particular, pose difficult or unsolved
problems. Over the years, a wealth of research, employing a vari-
ety of sensing and modeling technologies, has been conducted to
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deal with the complex modeling problem. Different types of tech-
niques, ranging from computer vision, computer graphics, photo-
grammetry, and remote sensing, have been proposed and developed
so far, each has unique strengths and weaknesses, and each per-
forms well for a particular dataset but may fail under another.

Similarly, the generation of high-resolution photorealistic tex-
tures has been extensively investigated and many algorithms have
been already proposed. However, the complexity of these algo-
rithms increases considerably when dealing with large-scale virtual
environments. In addition, these texturing techniques for large-
scale environments are limited to using a single image per building
which makes it impossible to recover textures for missing or oc-
cluded areas and requires even more time-consuming manual work.
These problems impose a serious limitation in achieving a realistic
appearance for the models and in extent diminishes the immersive
experience of the users.

In this work we address the problem of rapid creation of pho-
torealistic large-scale virtual environments. Firstly, we address the
3D model reconstruction problem and propose a novel parameter-
ized geometric primitive for the automatic detection, identification
and reconstruction of building models. We leverage the symme-
try constraints found in man-made structures to reduce the number
of unknown parameters needed during the model reconstruction,
therefore considerably reducing the computational time required.
In addition, complex buildings containing non-linear surfaces such
as domes, stadiums, etc. are interactively reconstructed using a non-
linear primitive.

Secondly, we address the problem of texturing, and propose a
rendering pipeline for the composition of photorealistic textures. A
significant advantage of this pipeline is that textures for missing or
occluded areas in one image can be recovered from another image
therefore eliminating the need for any manual editing work. Im-
ages captured from multiple sensors (ground, aerial, satellite) are
integrated together to produce a set of view-independent, seamless
textures.

We have extensively tested the proposed approach with a wide
range of sensing data including satellite, aerial, ground photographs
and LiDAR(Light Detection And Ranging) and present our results.

The paper is organized as follows. In the next section, we dis-
cuss previous work related to modeling and texturing. Section 3
provides an overview of the system. Section 4 describes the two
main components for the reconstruction of large-scale models from
LiDAR, namely the data pre-processing in section 4.1, and the mod-
eling in section 4.2. In particular, section 4.2.2 introduces the novel
parameterized geometric primitive used to automatically identify
and reconstruct buildings with the most commonly occurring linear
roof-types. Section 5 describes the texturing pipeline employed for
the generation of photorealistic textures. The two main components
of the texturing pipeline are the registration of imagery from various
optical sensors described in section 5.1, and the texture composition
described in section 5.2.

2 RELATED WORK

2.1 Modeling

A good survey on large-scale modeling techniques can be found in
[5]. In [4] the authors present a method for reconstructing large-
scale 3D city models by merging ground-based and airborne-based
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LiDAR data. The elevation measurements are used to recover the
geometry of the roofs. Facade details are then incorporated by the
high resolution capture of a ground based system which has the
advantage of also capturing texture information. The textures aid
in the creation of a realistic appearance of the model. However,
at the cost of having detailed facades they neglect to deal with the
complexities and wide variations of the buildings’ roof types. The
same authors later extended their method to incorporate texture in-
formation from oblique aerial images. Although they combine mul-
tiple aerial images to determine the model’s textures, their method
is restricted to traditional texture mapping rather than combining
all available texture information to generate a composite texture i.e.
blending. Therefore, a significant color difference between images
will cause visible and non-smooth transitions between neighbour-
ing polygons of different texture images.

In [20] You et al, present an interactive primitive-based model-
ing system for the reconstruction of building models from LiDAR
data. Using the user input, their system automatically segments the
building boundary, performs model refinement, and assembles the
complete building model. However, user input is required for the
detection as well as the identification of buildings and their roof-
types.

In [15] they develop an interactive system for reconstructing ge-
ometry using non sequential views from uncalibrated cameras. The
calculation of all 3D points and camera positions is performed si-
multaneously as a solution of a set of linear equations by exploiting
the strong constraints obtained by modeling a map as a single affine
view. However, due to the considerable user interaction required by
the system, its application to large-scale areas is very limited.

In [13] the proposed system can deal with uncalibrated image
sequences acquired with a hand-held camera. Based on tracked
or matched features the relations between multiple views are com-
puted. From this both the structure of the scene and the motion of
the camera are retrieved. Although the reconstructed 3D models are
visually impressive they consist of complex geometry -as opposed
to simple polygonal models- which requires further processing and
limits their applications.

In [12] Nevatia et al, propose a user-assisted system for the ex-
traction of 3D polygonal models of buildings from aerial images.
Low level image features are initially used to build high level de-
scriptions of the objects. Using a hypothesize and verify paradigm
they are able to extract impressive models from a small set of aerial
images. The authors later extended their work in [8] to automati-
cally estimate camera pose parameters from two or three vanishing
points and three 3D to 2D correspondences.

In [2] a ground-based LiDAR scanner is used to record a rather
complex ancient structure of significant cultural heritage impor-
tance. Multiple scans were aligned and merged together using a
semi-automatic process and a complete 3D model was created of
the outdoor structure. The reconstructed model is shown to con-
tain high-level of details however the complexity of the geometry
(90 million polygons for one building) limits this approach to the
reconstruction of single buildings rather than large-scale.

In a different approach, [3] proposed an interactive system which
can reconstruct buildings using ground imagery and a minimal set
of geometric primitives. More recently [14] extended this system
to incorporate pointcloud support as part of the reconstruction how-
ever the required user interaction increases considerably for large-
scale areas. Moreover, the user interaction depends on the desired
level of detail of the reconstructed models which may vary consid-
erably according to the application.

2.2 Texturing

One of the most popular and successful techniques in this area is
the one introduced by [3] which uses a small set of images to recon-
struct a 3D model of the scene. View-dependent texture mapping

(VDTM) is then performed for the computation of the texture maps
of the model. By interpolating the pixel color information from dif-
ferent images new renderings of the scene can be produced. The
contributions of each image to a pixel’s color is weighted based on
the angle difference between the camera’s direction and the novel
view-point’s direction. The authors then extended their work and
showed how VDTM can be efficiently implemented using projec-
tive texture mapping, a feature available in most computer graphics
hardware. Although this technique is sufficient to create realistic
renderings of the scene from novel view-points its computation is
still too expensive for real-time applications, like games or virtual
reality.

In [11] they order geometry into optimized visibility layers for
each photograph. The layers are subsequently used to create stan-
dard 2D image-editing layers which become the input to a layered
projective texture rendering algorithm. However, this approach
chooses the best image for each surface rather than combining the
contributions of all the images to minimize information loss.

In [2] reflectance properties of the scene were measured and
lighting conditions were recorded for each image taken. An inverse
global illumination technique was then used to determine the true
colors of the model’s surfaces which could then be used to relight
the scene. The generated textures are photorealistic, however for
large-scale areas it requires considerable amount of manual work
for the capturing and the processing of the data.

A method for creating renders from novel view-points without
the use of geometric information is presented in [9], where densely
regularly sampled images are blended together. The image capture
for small objects is very easily achieved, however this task is close
to impossible to perform for large-scale areas.

A slightly different approach for texture generation and extrac-
tion is proposed in [18]. Given a texture sample in the form of an
image, they create a similar texture over an irregular mesh hierar-
chy that has been placed on a given surface, however this approach
cannot capture the ”actual” appearance of the models.

3 SYSTEM OVERVIEW

The system’s overview is summarized in Figure 1. Firstly, the air-
borne LiDAR data is preprocessed as described in section 4.1. This
step involves resampling (section 4.1.1) the data into a regular grid
structure, filtering i.e. hole filling and smoothing (section 4.1.2),
and segmenting the points into vegetation or ground (section 4.1.3).
The preprocessing plays an essential role in the success of mod-
eling since it reduces the noise and inconsistencies from the data
while ensuring that important features such as discontinuities are
preserved.

Secondly, the roof boundaries are extracted from the prepro-
cessed data (section 4.2.1) and 3D models are generated based on
the automatic identification of the roof-types (section 4.2.2). A ma-
jor advantage of this approach is that it can automatically identify
the roof-types which can be a very difficult task even for a hu-
man operator. In addition, an interactive non-linear primitive is
employed for the reconstruction of complex non-linear roof-types
(section 4.2.3).

Finally, the camera poses for the ground, aerial and satellite im-
ages are calculated from registered correspondences to the recon-
structed 3D models (section 5.1), and are used by the rendering
pipeline to generate the composite photorealistic textures (section
5.2). A key aspect of this pipeline is the integration of multiple
information for the efficient and effective handling of textures for
missing or occluded areas.

4 LARGE-SCALE MODEL RECONSTRUCTION

4.1 Pointcloud Data Pre-processing
The preprocessing of the raw 3D pointcloud data is performed in
three steps: resampling, filtering and segmentation. The result is a
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Figure 1: System overview. Three main components: preprocessing,
modeling and texturing.

classification of the refined points into ground and vegetation.

4.1.1 Resampling
The unstructured 3D pointcloud (Figure 2(a)) is initially resampled
into a 2D regular grid (map shown in Figure 2(b)). To overcome
the problem of information loss of the samples stored in the grid,
the dimensions of the grid are determined based on the sampling
rate which is automatically calculated either by specifying a desired
resolution or by specifying a maximum allowed error tolerance be-
tween the samples. For the results shown in this paper we have used
a maximum allowed error tolerance τ = 0.00001.

(a) (b)

Figure 2: Resampling of the 3D pointcloud data into a regular grid.
(a) Unstructured 3D pointcloud. (b) 2D Regular grid. The image co-
ordinates represent the X,Y of each point and the intensity represents
the elevation Z.

4.1.2 Filtering
Noise in the measurements of the original data and inconsistencies
introduced by the resampling process are removed while ensuring
that important features such as discontinuities are preserved. To
achieve this, we perform a normal optimization based on graph-
cuts to smooth the normals, followed by a point optimization using
gradient-descent to smooth the points.

A set of uniformly distributed normals (Figure 3(c)) computed
from a half-sphere (Figure 3(a),3(b)) are used to re-label the noisy
normals computed from the original points ([19]). This results in

(a) (b) (c) .

Figure 3: Computation of smooth normal labels from a half-sphere.
(a) 2D point map of a half-sphere. (b) 3D (top)-view of (a). (c) Smooth
normal labels computed from (a).

smoothing the normals while preserving important features such as
discontinuities [1]. A gradient-descent optimization then refines the
original points such that their computed normals are identical to the
smooth re-labeled normals.

For example, the initial normals in Figure 4(b) are computed
from the original points in Figure 4(a). A graph-cut optimization
performed using these initial normals and the smooth normal labels
from Figure 3(c) results in the re-labeled normals shown in Figure
4(c). Finally, a gradient-descent optimization iteratively refines the
original points such that the computed normal at each point matches
the re-labeled normal (Figure 4(d)).

A closeup of a mesh produced by triangulating the refined points
is shown in Figure 4(h),4(i). Different number of smooth normal
labels ‖L‖ (computed by varying the radius of the half-sphere) and
different values for the smoothness weight λ used by graph-cuts,
are shown. The results shown in this paper were generated with
‖L‖= 104,λ = 0.5.

4.1.3 Segmentation
Buildings are man-made structures with the characteristic of hav-
ing roofs with uniform elevation and uniform orientation. On the
other hand, the elevation and orientation of trees and other vegeta-
tion rapidly changes between neighbouring points. Thus, the goal
of the segmentation is to determine neighbouring points with ele-
vation and orientation difference less than a predefined threshold
(∆z = 0.01,∆θ = 15◦) and to group them into regions representing
building candidates using a region-growing algorithm. In addition,
regions consisting of a number of points less than a minimum are
discarded (τarea < 50px).

4.2 Modeling
The modeling of the buildings from the segmented candidate points
is automatically performed in three steps: building detection, roof-
type identification and model reconstruction.

4.2.1 Building Detection
One of the main limitations of airborne LiDAR scanners is the ac-
curate measurements near discontinuities due to the rapid change
in elevation which often leads to boundaries with a zig-zag shape.
To overcome this problem, the convex hulls enclosing the points
of each region detected using a region-growing algorithm, are lin-
earized using Douglas-Peucker polygonal approximation (∆ε =
1px). For example, Figure 5(a) shows the detected points after
the application of a region-growing algorithm using an elevation
threshold ∆z = 0.01 and an orientation threshold ∆θ = 10◦. The
starting point for the region growing is initialized as the point with
the highest elevation which is indicated with a red color. Figure
5(b) shows the resulting approximated convex hull of the detected
points in Figure 5(a). The length of the boundaries are used to de-
termine the width W and height H of the building structure. Finally,
a series of subtractive polygonal boolean operations are applied to
the regions’ boundaries to resolve any inconsistencies produced by
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: The filtering is performed in two steps: normal-based op-
timization using graph-cuts for smoothing the normals, and point-
based gradient-descent optimization for smoothing the points using
the smooth normals: (a) Initial noisy points Pinitial . (b) Initial noisy
normals Ninitial . (c) Smooth normals Nsmooth. (d) Smooth points
Psmooth. (e) Point difference (|Pinitial - Psmooth|). (f) Normal difference
(1−|Ninitial .Nsmooth|). Graph-cut optimization control parameters: (g)
Original data. (h) ‖L‖= 104,λ = 0.5. (i) ‖L‖= 492,λ = 1.0.

overlaps due to structures on the roofs such as chimneys, elevator
engines, air-conditioners, etc.

(a) (b)

Figure 5: Building detection. (a) Detected roof points using region-
growing. The red point indicates the starting point i.e. with highest
elevation. (b) Resulting building boundaries. (Note: the radius of the
red point and the width of the red lines were manually increased for
clarity)

4.2.2 Linear Roof-type Identification and Reconstruction
The identification of the roof-types is an essential part of the mod-
eling process. In many cases especially for complex buildings and
low-resolution data, this is still a very difficult task even for a hu-
man operator. We address this problem and present a novel param-

eterized geometric primitive for the automatic identification of the
most commonly occurring roof-types.

We leverage the symmetry constraints found in man-made struc-
tures and parameterize a geometric primitive using only two vari-
ables. Figure 6(a) shows the geometric structure of the parameter-
ized primitive. By specifying a local coordinate system the control
points (external points V0−3 and internal points P0−3) are expressed
as functions of two variables α,β such as,
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2
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W
2

,−H
2
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,
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where W is the width, and H is the height of the primitive which are
determined by the length of the detected boundaries as explained in
section 4.2.1. This parameterization allows for the symmetry con-
straints to be enforced since a change of a single point will affect
all other points. In order to ensure that all the internal points P0−3
are always within the exterior points V0−3 the parameters are bound
in the range 0≤ α ,β ≤ 1. By varying the values of the two param-
eters α,β all commonly occurring roof-types can be produced by
a single primitive as demonstrated in Figure 6(b). This is a major
advantage since it significantly reduces the number of primitives re-
quired to model a scene and allows a single primitive to be used for
the automatic identification of multiple roof-types. Another signifi-
cant advantage is that the optimization involves only two unknowns
which are bound-constraint due to the condition that 0≤ α,β ≤ 1,
thus making the convergence to a solution extremely fast.

A quasi-Newton minimization for bound-constrained problems,
is then performed to find the optimal values of the two variables
α ,β such that Eerror in equation 5 i.e. the sum of the least-square
fitting error of the five planar surfaces, is minimum,

Eerror =
N

∑
n=0

∑
∀p∈P

(ψp− f (χp,α,β ))2 (5)

where N is the number of planes (5), and f (...) is a fitting function.
Degenerate cases can occur when any of the interior points P0−3

collapse on the same point. For example when α = β = 0 all the
interior points P0−3 collapse on the same point, therefore producing
a degenerate plane Π5 (Figure 6(a)). Since fitting a plane requires
a minimum of 3 distinct points, we specifically handle degenerate
cases and return a plane fitting error of 0. In this example, the plane
fitting error for the degenerate plane Π5 will be 0 and thus the total
error Eerror will be equal to the plane fitting error of the planes
Π1−4. Our experiments have shown that even in degenerate cases
such as this, the minimization correctly converges to the optimal
values for the parameters α,β . A special case occurs with flat (or
flat-sloped) roofs since any value for α,β is an optimal value. In
this case, the reconstructed model may consist of multiple co-planar
surfaces.

During this minimization, a gaussian mixture model (GMM) is
used to model the elevation distribution of all points p ∈ P inside
the planar surface boundaries. A GMM consists of a superposition
of gaussian densities which can better separate the outlier points
produced by objects such as elevator engines, air-conditioners and
chimneys commonly found on the roofs, thus removing the other-
wise significant bias of those outliers from the distribution of the
true surface points lying on the roof. An expectation maximization
algorithm fits a GMM of 3 components to the elevation samples and
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(a)

(b)

Figure 6: The parameterized geometric primitive. (a) Parameterized
primitive. (b) The different roof types generated by varying the pa-
rameters α,β .

(a) (b)

GMM comp. Mixing
coeff.(κ)

Mean(µ) Variance(σ2)

G0 0.684208 0.526408 0.0000000479
G1 0.225278 0.538507 0.0000405911
G2 0.0905144 0.493301 0.000859696

(c)

Figure 7: Example classification of points using a gaussian mixture
model consisting of 3 components. (a) Roof cluttered with objects.
(b) Point classification based on the gaussian component which max-
imizes the probability of each point (G0-red, G1-green, G2-blue). (c)
The values of the GMM for 7(a).

determines the mixing coefficient κi, the mean µi and the variance
σ2

i of each gaussian density Gi where i = 0,1,2.
Figure 7(a) shows a building with several objects of different ele-

vation located on the roof and the parameters for the GMM compo-
nents are shown in Table 7(c). We define the dominant component
of the GMM, Gdom, to be the component with the highest mixture
coefficient κdom in the GMM e.g. G0 in Table 7(c). The dominant

component Gdom is then used to classify all the points p ∈ P whose
propability is maximized in Gdom (equation 6),

Pinliers = ∀p ∈ P∀i ∈ {0,1,2}(Pr(p|Gdom)≥ Pr(p|Gi)) (6)

, as the true surface points Pinliers ∈ P, and everything else as out-
liers Poutliers = P− Pinliers. Figure 7(b) shows the points inside
the detected boundaries being color-coded based on the distribu-
tion that maximizes their probability. Red points have the highest
probability in G0-which is the most dominant component Gdom-,
green points in G1 and blue points in G2. Using only the inlier
points equation 5 now becomes,

Eerror =
5

∑
n=0

∑
∀p∈Pinliers

(ψp− f (χp,α,β ))2 (7)

and the fitting is performed only on the points Pinliers corresponding
to the dominant component i.e. red points.

The classification using the GMMs has the effect of making the
plane fitting more robust and less susceptive to the presence of out-
liers. This greatly improves the performance of the optimization as
well as the accuracy of the reconstructed surfaces.

An example is shown in Figure 8(a) where the detected bound-
aries are shown in red and the automatically recovered interior
boundaries produced by the optimization are shown in yellow. Note
that even for a human operator it is hard to identify the roof-type of
these buildings from Figure 8(a). The reconstructed buildings are
shown in Figure 8(b), overlaid to the original data. Figure 8(c),8(d)
shows different roof-types successfully identified by the primitive.

(a) (b)

(c) (d)

Figure 8: Automatic roof-type identification using the parameterized
geometric primitive. (a) Detected boundaries (red lines) and recov-
ered interior boundaries (yellow lines). (b) Reconstructed buildings
from (a) overlaid on original data (Gabled roof-types). (c) Hipped
roof-types. (d) Pyramidal roof-types.

4.2.3 Non-linear Roof-type Reconstruction
The reconstruction of 3D models is performed based on the auto-
matically identified roof-types as previously explained to produce a
water-tight, light-weight polygonal geometric model of the scene.
Despite the fact that the parameterized primitive can model most of
the buildings found in an urban area, it is limited to handling lin-
ear surfaces and cannot be used for the identification of complex
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buildings containing non-linear surfaces. Therefore, an interactive
approach is employed for the identification and reconstruction of
such complex buildings.

An ellipsoidal primitive is designed to handle all types of non-
linear surfaces either dome-like or stadium-like (hollow) by fitting
an ellipsoid to the data. The primitive is initialized with the cen-
troid and two perpendicular points on the surface’s perimeter used
to determine α and β in equation 8. A non-linear optimization is
then performed to recover the optimal value for the single unknown
variable γ such that the equation 8 is minimized.

x2

α2 +
y2

β 2 +
z2

γ2 = 0 (8)

Figure 9(a) shows an arena with a dome-like non-linear roof re-
constructed using this primitive. Similarly, Figure 9(b) shows a
stadium-like structure being overlaid on the original data. The sys-
tem automatically determines what type of surface is being recon-
structed and automatically chooses the orientation of the surface
type i.e. dome- or stadium-like.

(a) (b)

Figure 9: Reconstruction of non-linear structures. (a) Dome-like
structure. (b) Stadium-like structure.

5 PHOTOREALISTIC TEXTURE GENERATION

The generation of photorealistic textures is performed in two steps:
registration of imagery to the reconstructed model and texture com-
position.

5.1 Registration
The goal of the registration is to recover the camera projection ma-
trix which is expressed in terms of the intrinsic and extrinsic param-
eters of the camera,

C =




α −αcot(θ) u0

0 β
sin(θ) v0

0 0 1




︸ ︷︷ ︸
intrinsic




r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




︸ ︷︷ ︸
extrinsic

(9)

where α = k fx, β = k fy, ( fx, fy) is the focal length on the x and y
axis respectively, θ is the skew angle, u0,v0 is the principal point on
the x and y axis respectively and r1−3, t1−3 determine the camera’s
rotation and translation relative to the world.

Various methods have already been proposed for the estimation
of these parameters. However, when dealing with images from mul-
tiple sensors it is often required to use various methods for the re-
covery of the matrix C depending on the type and characteristics of
the images.

5.1.1 Registration of Ground Images
The camera model of equation 9 is used to recover the camera pose
for ground images. A minimum of six correspondences between the
images and the reconstructed model are required and the camera
parameters are calculated using a linear least-squares method. In
cases where there are not enough correspondences between the im-
age and the model, a non-linear optimization is used to recover the
parameters. Alternatively, vanishing points are used for estimating

the parameters as in [15]. A bundle adjustment optimization finally
refines the camera parameters thus improving the overall accuracy
of the alignment. Figure 10(a) shows ground images being aligned
to a reconstructed model of a building. The blue marks are areas of
unwanted textures (trees and light-post) which are discussed later.

5.1.2 Registration of Satellite and Aerial Images

Aerial images are taken from oblique angles and therefore the cam-
era pose can be recovered with the same process explained pre-
viously for ground images. In cases where an initial estimate of
the camera pose is available, either through manual interaction or
GPS coordinates, we use a non-linear optimization to determine
the parameters of equation 9. Figure 10(b) shows the camera pose
recovery of an aerial image. The image is then projected on the
reconstructed models for visual verification.

Satellite images on the other hand have weak-perspective and
are often produced by stitching together several perspective images.
The camera model of equation 9 cannot be used to deal with multi-
perspective images and will most definitely fail. However, this type
of images can be rectified by using vanishing points to recover the
extrinsic parameters of the camera (rotation and translation) [20].
Additional correspondences can then be used to compute a homog-
raphy between the rectified image and the model.

(a)

(b)

Figure 10: Registration of ground, aerial and satellite. (a) Regis-
tration of 2 ground images. The blue areas indicate occluded ar-
eas which will be recovered by the texture composition. (b) Camera
pose recovery of aerial image. Projective texture mapping is used to
project the image on the reconstructed models for visual verification.

5.2 Texture Composition
The texture composition is performed by integrating the appearance
information of all registered images to create view-independent,
seamless textures. A key aspect of this integration is the efficient
and effective recovery of texture information for occluded and miss-
ing areas. The generation of the composite textures involves three
steps: scene pre-processing, computation of the texture map reso-
lution and rendering and packing.
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5.2.1 Scene Pre-processing
A view-dependent based subdivision is first applied to the model to
ensure that all surfaces are entirely visible in all images. For each
image, a visibility check is performed and the following actions are
taken:

• a surface which is entirely visible in the image remains un-
changed.

• a partially visible surface is clipped at the boundary of the
projection of the image plane, and

• a non-visible (or backfacing) surface remains unchanged.

Figure 11(a) shows an example of the visibility clipping. The cube
is clipped at the projected boundary of the first image plane and
similarly, the cylinder is clipped at the projected boundary of the
third image. This ensures that all surfaces are entirely visible in
all images which is imperative for the correct computation of the
texture map resolutions.

(a) (b)

Figure 11: Visibility clipping and texture map resolution computation.
(a) Visibility-based clipping. (b) Texture map resolution.

5.2.2 Texture Map Resolution
A surface may appear in multiple images with different resolutions.
To ensure minimal information loss and sharp textures, the reso-
lution of a texture map is chosen to be the size of the projected
polygon with the largest area in image space. Figure 11(b) shows
each surface (red polygons) projected into three image planes. The
dimensions of the polygon with the largest area are chosen as the
resolution of the texture map for the surface. Surfaces which are
backfacing or are not visible in any of the images are automatically
assigned a default color.

5.2.3 Rendering and Texture Packing
The composite textures are then rendered using ray-tracing. For
each point on the surface, a ray is cast to the image planes. A point
on the surface, is visible in an image if there is no other surface
intersecting the ray casted from the point to the image plane. If the
point is visible in an image then the corresponding pixel color is
retrieved and is weighted based on the following criteria:

1. the distance of the pixel to the image boundary. Pixels which
are close to the edges receive a lower weight than pixels lo-
cated in the middle. This is required in order to hide any
stitching effects between images, and reduce the artifacts in-
troduced when blending multiple images. In our examples the
weight of this criterion is wd1 = 0.3.

2. the angle between the camera’s direction and the surface’s
normal. Images taken from oblique angles are down-
weighted, since they have a higher degree of perspective
distortion. In our examples the weight of this criterion is
wθ = 0.3.

3. the distance of the pixel from the principal point. Pixels which
are further away from the principal point exhibit higher ra-
dial distortion. Although the radial distortion coefficients can
be closely approximated and used to undistort the image, we
have found that it is more likely to have misalignments be-
tween images at points further away from the principal point.
In our examples the weight of this criterion is wd2 = 0.2.

4. the resolution of the image. High-resolution images capture
higher-level of detail than low-resolution images thus they are
preferred. In our examples the weight of this criterion is wr =
0.2.

The composite texture maps are finally sorted based on their res-
olution and are packed into a texture atlas. The process transforms
the texture space of each map therefore requiring the recalculation
of the texture coordinates for the models in the scene.

As previously mentioned, the rendering pipeline has the signifi-
cant advantage that multiple information is integrated for the gener-
ation of the textures thus allowing the efficient and correct handling
of occluded and missing areas. An example was shown Figure 10(a)
where the occluded areas were indicated with a blue color. The
composite textures produced for that building are shown in Figure
12. The blue masked areas which indicated occluded areas due to
the presence of a tree and a light-post are successfully recovered.

Figure 12: Occluded areas and areas which are not visible by any
camera and therefore no texture information is available appear as
black.

Another example of a textured building is shown in Figure 13(a).
The composite textures were generated using a set of 3 ground im-
ages. In this case building details such as the window intrusions
are not modeled therefore causing perspective distortion effects as
shown in Figure 13(b). These effects become even more dramatic
as the angle between the camera viewing direction and surface ori-
entation increases. This is the main reason for the use of the second
criterion during the weight computation.

(a) (b)

Figure 13: Composite textures generated using 3 high-resolution
ground images. (a) Novel view point render. (b) Perspective dis-
tortion effects due to unmodeled geometry.

6 RESULTS

Figure 14 shows a virtual environment created with the proposed
approach. The models in Figure 14(a) are shown overlaid on the
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original LiDAR data. Figure 14(b) shows the model textured with
high-resolution (4K) satellite imagery and Figure 14(c) shows an
area in the scene with textures generated from satellite, aerial and
ground imagery.

(a)

(b)

(c)

Figure 14: Reconstructed virtual environment. (a) Reconstructed
models overlaid on original data. (b) Area textured with high-
resolution (4K) satellite imagery. (c) Area textured with satellite,
aerial and ground imagery.

7 CONCLUSION

We have presented a novel and complete approach for the rapid
creation of photorealistic large-scale virtual environments.

Firstly, we resolved the 3D model reconstruction problem us-
ing a novel parameterized geometric primitive for the automatic de-
tection, identification and reconstruction of building models. This
primitive significantly reduces the number of user interaction and
increases the computational speed of the reconstruction process
by exploiting common symmetry constraints found in man-made
structures. In addition, complex buildings containing non-linear
surfaces such as domes, stadiums, etc. are interactively recon-
structed using a non-linear primitive.

Secondly, we resolved the problem of texturing and presented
a rendering pipeline for the composition of photorealistic textures
which allows for the effective handling of missing or occluded ar-
eas. The result is a set of view-independent, seamless textures
which are composited from images captured from multiple sensors
(ground, aerial, satellite).

Finally, we have presented results which validate our approach.
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