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Abstract

In this paper we present a novel vision-based system for au-
tomatic detection and extraction of complex road networks from
various sensor resources such as aerial photographs, satellite
images, and LiDAR. Uniquely, the proposed system is an inte-
grated solution that merges the power of perceptual grouping
theory(gabor filtering, tensor voting) and optimized segmentation
techniques(global optimization using graph-cuts) into a unified
framework to address the challenging problems of geospatial fea-
ture detection and classification.

Firstly, the local presicion of the gabor filters is combined with
the global context of the tensor voting to produce accurate classi-
fication of the geospatial features. In addition, the tensorial repre-
sentation used for the encoding of the data eliminates the need for
any thresholds, therefore removing any data dependencies.

Secondly, a novel orientation-based segmentation is presented
which incorporates the classification of the perceptual grouping,
and results in segmentations with better defined boundaries and
continuous linear segments.

Finally, a set of gaussian-based filters are applied to automat-
ically extract centerline information (magnitude, width and orien-
tation). This information is then used for creating road segments
and then transforming them to their polygonal representations.

1. Introduction
Recent technological advancements have caused a sig-

nificant increase in the amount of remote sensor data and of
their uses in various applications. Efficient and inexpensive
techniques in the area of data acquisition have popularized
the use of remote sensor data and led to their widespread
availability. However, the interpretation and analysis of
such data still remains a difficult and manual task. Specif-
ically in the area of road mapping, traditional methods re-
quire time-consuming and tedious manual work which does
not meet the increasing demands and requirements of cur-
rent applications. Although considerable attention has been
given on the development of automatic road extraction tech-
niques it still remains a challenging problem due to the wide

variations of roads(urban, rural, etc) and the complexities of
their environments(occlusions due to cars, trees, buildings,
etc).

In this work we focus on the development of a vision-
based road detection and extraction system for the accurate
and reliable delineation of transportation networks from re-
mote sensor data including aerial photographs, satellite im-
ages, and LiDAR. We present an integrated solution that
merges the strengths of perceptual grouping theory(gabor
filters, tensor voting) and segmentation(global optimization
by graph-cuts), under a unified framework to address the
challenging problem of automated feature detection, classi-
fication and extraction.

Firstly, local orientation information is extracted using
a bank of Gabor filters, which is encoded into a tensorial
representation. This representation can simultaneously cap-
ture the geometrical information of multiple feature types
passing through a point(surface, curve, junction) and an as-
sociated measure of the likelihood of that point being part of
each type. A tensor voting is then performed which globally
communicates and refines the information carried at each
point. An important advantage of combining gabor filters
and tensor voting for the classification is that it eliminates
the need for hard thresholds. Instead, the refined likelihoods
of each point give an accurate estimate of the dominant fea-
ture passing through that point, and are therefore used for
the classification into curve and junction features.

Secondly, a novel orientation-based segmentation using
graph-cuts is performed. An important aspect of this seg-
mentation is that it incorporates the orientation information
of the classified curve features and favors towards keeping
those curves connected. The result is a binary segmentation
into road and non-road candidates.

Finally, a pair of gaussian-based bi-modal and single-
mode kernels are developed for the automatic detection of
road centerlines and the extraction of width and orienta-
tion information from the segmented road candidates. Lin-
ear segments resulting from the application of an iterative
Hough transform on the road centerlines, are validated and



refined(merge, split, approximate, smooth). Using the au-
tomatically extracted width and orientation information, a
tracking algorithm converts the refined linear segments into
their equivalent polygonal representations.

In summary, our system combines the strengths of the
proposed techniques to resolve the challenging problem of
extracting complex road networks. We leverage the multi-
scale, multi-orientation capabilities of gabor filters for the
inference of geospatial features, the effective and robust
handling of noisy, incomplete data of tensor voting for the
feature classification and the fast and efficient optimization
of graph cuts for the segmentation and labeling of road fea-
tures.

We have extensively tested the performance of the pro-
posed system with a wide range of remote sensing data
including aerial photographs, satellite images, and LiDAR
and present our results.

2. Related Work
Different methodologies have been proposed and devel-

oped so far and can be categorized as follows:

2.1. Pixel-based

In [2] lines are extracted in an image with reduced res-
olution as well as roadside edges in the original high reso-
lution image. Similarly, [10] uses a line detector to extract
lines from multiple scales of the original data. [9] applies
the edge detector on multi-resolution images and uses the
result as input to the higher-level processing phase. [13]
applies Steger’s differential geometry approach for the line
extraction. In [1] they use a Deriche operator for the edge
detection with an added hysteresis threshold, followed by
an edge smoothing using the Ramer algorithm.

In [9] they use a multi-scale ridge detector for the detec-
tion of lines at a coarser scale, and then use a local edge
detector at a finer scale for the extraction of parallel edges
which are optimized using a variation of the active contour
models technique(snakes). [5] presents a technique where a
directional adaptive filter is used for the detection of pixels
with particular orientation. Similarly, [12] achieves excel-
lent results by using a gaussian model based approach. In
order to extract the road magnitude and orientation for each
point, they use a quadruple orthogonal line filter set.

2.2. Region-based

In [15] they use predefined membership functions for
road surfaces as a measure for the image segmentation and
clustering. Likewise, in [4] they use the reflectance prop-
erties, from the ALS data and perform a region growing
algorithm to detect the roads. [8] uses a hierarchical net-
work to classify and segment the objects. A slightly differ-
ent approach is proposed in [10] where a line detector and

a classification algorithm are applied on multiple scales of
the original data and the results are then merged.

2.3. Knowledge-based

In [13], human input is used to guide a system in the ex-
traction of context objects and regions with associated con-
fidence measures. The system in [14] integrates knowledge
processing of color image data and information from digi-
tal geographic databases, extracts and fuses multiple object
cues, thus takes into account context information, employs
existing knowledge, rules and models, and treats each road
subclass accordingly. [4] uses a rule-based algorithm for
the detection of buildings at a first stage and then at a sec-
ond stage the reflectance properties of the road. Similarly,
[15] uses reflectance as a measure for the image segmen-
tation and clustering. Explicit knowledge about geometric
and radiometric properties of roads is used in [13] to con-
struct road segments from the hypotheses of roadsides. In
[1] the developed system can detect a variety of road junc-
tions using a feed-forward neural network, which requires
collected data for the training of the network. [11] takes
high resolution images as input along with prior knowledge
about the roads e.g. road models and road properties.

3. System Overview

Although many different approaches have been proposed
and developed for the automatic extraction of road net-
works, it still remains a challenging problem due to the
wide variations of roads e.g. urban, rural, mountainous etc
and the complexities of their environments e.g. occlusions
due to cars, trees, buildings, shadows etc. For this reason,
traditional techniques such as pixel- and region-based have
several problems and often fail when dealing with com-
plex road networks. Our proposed approach addresses these
problems and provides solutions to the difficult problem of
automatic road extraction. Figure 1 visually summarizes
our approach.

Firstly, we exploit the characteristic that roads are locally
linear with smoothly varying curvature, and leverage the
multi-scale, multi-orientation nature of gabor filters to de-
tect geospatial features of different orientations and widths.
The geospatial features are encoded into a tensorial repre-
sentation which has the significant advantage that it can cap-
ture multiple types of geometric information therefore elim-
inating the need for thresholding. The refinement and clas-
sification is then performed using tensor voting which takes
into account the global context of the extracted geospatial
features. In addition, tensor voting can effectively deal with
noisy and incomplete data therefore resolving commonly
occurring problems due to occlusions and shadows from
cars, vegetation and buildings.

Secondly, a novel orientation-based segmentation tech-



Figure 1. System overview.

nique is proposed for the fast and efficient segmentation of
road features. A key advantage of this segmentation is that
it incorporates the globally refined geometric information of
the classified curve features which results in segmentations
with better defined boundaries.

Finally, road centerline information extracted with a pair
of single and bi-modal gaussian-based filters is linearized
using an iterative Hough transform. This eliminates the
need for specifying the number of peaks and other thresh-
olds required by the Hough transform and iteratively ex-
tracts all dominant linear segments. These linear seg-
ments are then converted into their equivalent polygonal
representations using the width information extracted ear-
lier by the filters. Polygonal boolean operations are lastly
performed for the correct handling of overlaps at junc-
tions/intersections.

4. Geospatial Feature Inference and Classifica-
tion

4.1. Gabor Filtering

An attractive characteristic of the Gabor filters is
their ability to tune at different orientations and frequen-
cies. Thus by fine-tuning the filters we can extract high-
frequency oriented information such as discontinuities and
ignore the low-frequency clutter.

We employ a bank of gabor filters tuned at 8 different ori-
entations θ linearly varying from 0 ≤ θ < π, and at 5 differ-
ent high-frequencies(per orientation) to account for multi-

scale analysis. A two dimensional gabor function g(x, y) in
space domain is given by

g(x, y) = ej(2π(u0x+v0y)+φ)×κe(−π(s2
x(x−x0)

2
θ+s2

y(y−y0)
2
θ))

(1)
where (u0, v0) is the spatial frequency, φ is the phase of the
sinusoidal, κ is a scale of the magnitude, (sx, sy) are scale
factors for the axes, (x0, y0) is the peak coordinates and θ is
the rotation angle. The remaining parameters in equation 1
are computed as functions of the orientation and frequency
parameters as in [6].

The application of the bank of gabor filters results in a
total of 40 response images(8 orientations x5 frequencies).
The response images corresponding to filters of the same
orientation and different frequency are added together. The
result is a single response image per orientation(total of 8)
which is then encoded using a tensorial representation as
explained in the next section 4.2.

4.2. Tensor Voting

Tensor voting is a perceptual grouping and segmentation
framework introduced by [7]. A key data representation
based on tensor calculus is used to encode the data. A point
x ∈ R3 is encoded as a second order symmetric tensor T
and is defined as,

T =
[

~e1 ~e2 ~e3

]  λ1 0 0
0 λ2 0
0 0 λ3

 ~eT
1

~eT
2

~eT
3

 (2)

T = λ1~e1~e
T
1 + λ2~e2~e

T
2 + λ3~e3~e

T
3 (3)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are eigenvalues, and
~e1, ~e2, ~e3 are the eigenvectors corresponding to

λ1, λ2, λ3 respectively. By applying the spectrum theorem,
the tensor T in equation 3 can be expressed as a linear com-
bination of three basis tensors(ball, plate and stick) as in
equation 4.

T = (λ1−λ2)~e1~e
T
1 +(λ2−λ3)(~e1~e

T
1 +~e2~e

T
2 )+λ3(~e1~e

T
1 +~e2~e

T
2 +~e3~e

T
3 )

(4)
In equation 4, (~e1~e

T
1 ) describes a stick(surface) with as-

sociated saliency (λ1 − λ2) and normal orientation ~e1,
(~e1~e

T
1 + ~e2~e

T
2 ) describes a plate(curve) with associated

saliency (λ2 − λ3) and tangent orientation ~e3, and (~e1~e
T
1 +

~e2~e
T
2 + ~e3~e

T
3 ) describes a ball(junction) with associated

saliency λ3 and no orientation preference. The geometrical
interpretation of tensor decomposition is shown in Figure
2(a).

An important advantage of using such a tensorial rep-
resentation is its ability to capture the geometric informa-
tion for multiple feature types(junction, curve, surface) and
a saliency, or likelihood, associated with each feature type
passing through a point.



Every point in the gabor filter response images computed
previously is encoded using equation 2 into a unit plate ten-
sor(representing a curve) with the orientation ~e3 aligned to
the filter orientation and is scaled by the magnitude of the
response of that point. The resulting eight tensors for each
point are then added together which produces a single ten-
sor per point capturing the local geometrical information.
To summarize, if a point pc lies along a curve in the original
image its highest response will be at the gabor filter with a
similar orientation as the direction of the curve. Encoding
the eight responses of pixel pc as unit plate tensors, scaling
them with the point’s response magnitudes and adding them
together results in a tensor where (λ2 − λ3) > (λ1 − λ2),
(λ2 − λ3) > λ3 and the orientation ~e3 is aligned to the di-
rection of the curve i.e. a plate tensor. Similarly a tensor
representing a point pj which is part of a junction will have
λ3 > (λ2 − λ3), λ3 > (λ2 − λ3) i.e. a ball tensor.

(a) (b)

Figure 2. (a)Tensor decomposition into the stick,plate and ball ba-
sis tensors in 3D. (b) Votes cast by a stick tensor located at the
origin O. C is the center of the osculating circle passing through
points P and O.

The encoded points then cast a vote to their neighbouring
points which lie inside their voting fields, thus propagating
and refining the information they carry. The strength of each
vote decays with increasing distance and curvature as spec-
ified by each point’s stick, plate and ball voting fields. The
three voting fields can be derived directly from the saliency
decay function [7] given by

DF (s, κ, σ) = e−( s2+cκ2

σ2 ) (5)

where s is the arc length of OP, κ is the curvature, c is a
constant which controls the decay with high curvature (and
is a function of σ), and σ is a scale factor which defines the
neighbourhood size as shown in Figure 2(b). The blue ar-
rows at point P indicate the two types of votes it receives
from point O: (1) a second order vote which is a second or-
der tensor that indicates the preferred orientation at the re-
ceiver according to the voter and (2) a first order vote which
is a first order tensor (i.e. a vector) that points toward the
voter along the smooth path connecting the voter and re-
ceiver. The scale factor σ is the only free variable in the
framework.

(a) (b)

(c) (d)

Figure 3. (a) Successfull handling of discontinuities. Before(left)
and after(right) the tensor voting process. (b) Original image of
Copper Mountain area in Colorado. (c) Saliency map indicating
the refined likelihoods produced by the tensor voting. Green indi-
cates curve-ness(λ2 − λ3), blue indicates junction-ness(λ3). and
classification using tensor voting. (d) Classified curve features de-
rived from 3(c). Note that no thresholds were used.

After the tensor voting the refined information is ana-
lyzed and used to classify the points as curve or junction
features. An example of a mountainous area with curvy
roads is shown in Figure 3(b). A saliency map indicating
the likelihood of each point as being part of a curve(green)
and a junction(blue) is shown in Figure 3(c). The saliency
map is used for the classification of the curve points which
are shown in Figure 3(d). A point with (λ2 − λ3) > λ3 is
classified as a curve point and a point with λ3 > (λ2 − λ3)
is classified as a junction point. Intuitively, a greener point
is a curve and a bluer point is a junction.

A key advantage of combining the gabor filtering and
tensor voting is that it eliminates the need for any thresholds
therefore removing any data dependencies. The local preci-
sion of the gabor filters is used to derive information which
is directly encoded into tensors. The tensors are then used as
an initial estimate for global context refinement using tensor
voting and the points are classified based on the their likeli-
hoods of being part of a feature type. This unique character-
istic makes the process invariant to the type of images being
processed. In addition , the global nature of tensor voting
makes it an ideal choice when dealing with noisy, incom-
plete and complicated images and results in highly accurate
estimates about the image features. This is demonstrated
in Figure 3(a) where the original image shows a polygon
with many gaps of different sizes in white and the recov-
ered, classified curve points are shown in yellow. As it can
be seen most of the discontinuities were successfully and



accurately recovered.

5. Road Feature Segmentation and Labeling

The classification of tensor voting provides an accurate
measure of the type of each feature i.e junctions and curves.
However, these features result from the presence of roads
as well as buildings, cars, trees, etc. A segmentation pro-
cess is performed to segment only the road features from
the classified curve features. The geometric structure of the
curve features combined with color information extracted
from the image, is used to guide an orientation-based seg-
mentation using optimization by graph-cuts which produces
a labeling of road and non-road candidates.

5.1. Graph-cut Overview

In [3] the authors interpret image segmentation as a
graph partition problem. Given an input image I , an undi-
rected graph G =< V,E > is created where each vertex
vi ∈ V corresponds to a pixel pi ∈ I and each undirected
edge ei,j ∈ E represents a link between neighbouring pix-
els pi, pj ∈ I . In addition, two distinguished vertices called
terminals Vs, Vt, are added to the graph G. An additional
edge is also created connecting every pixel pi ∈ I and the
two terminal vertices, ei,Vs and ei,Vt . For weighted graphs,
every edge e ∈ E has an associated weight we. A cut
C ⊂ E is a partition of the vertices V of the graph G into
two disjoint sets S,T where Vs ∈ S and Vt ∈ T . The cost
of each cut C is the sum of the weighted edges e ∈ C. The
minimum cut problem can then be defined as finding the
cut with the minimum cost which can be achieved in near
polynomial-time.

5.2. Labels

The binary case can easily be extended to a case of
multiple terminal vertices. We create two terminal ver-
tices for foreground O and background B pixels for each
orientation θ for which 0 ≤ θ ≤ π. In our experi-
ments, we have found that choosing the number of ori-
entation labels in the range Nθ = [2, 16] generates ac-
ceptable results. Thus the set of labels L is defined to be
L = {Oθ1 , Bθ1 , Oθ2 , Bθ2 ..., OθNθ

, BθNθ
} with size |L| =

2 ∗Nθ.

5.3. Energy minimization function

Finding the minimum cut of a graph is equivalent to find-
ing an optimal labeling f : Ip −→ L which assigns a label
l ∈ L to each pixel p ∈ I where f is piecewise smooth and
consistent with the original data. Thus, our energy function
for the graph-cut minimization is given by

E(f) = Edata(f) + λ ∗ Esmooth(f) (6)

where λ is the weight of the smoothness term.
Energy data term. The data term provides a per-pixel mea-
sure of how appropriate a label l ∈ L is, for a pixel p ∈ I in
the observed data and is given by,

Edata(f) =
∑
p∈I

Dp(f(p)) (7)

As in [3], the initial seed points are used twice: (1) To
compute an intensity distribution(in our case color distribu-
tion using gaussian mixture models) for the background and
foreground pixels. A measure of how appropriate a labeling
is, is then given by computing the negative log-likelihood
i.e. −ln(P (Ip|f(p))). (2) To encode the hard constraints
for the segmentation. Foreground and background pixels
are assigned the lowest and highest value of the function
Dp(f(p)), respectively. For all other pixels, Dp is com-
puted as,

Dp(f(p)) =
1− ln(P (Ip|f(p)))
2− ||θp − θf(p)||2

(8)

The energy data term then becomes,

Edata(f) =
∑
p∈I

(
1− ln(P (Ip|f(p)))
2− ||θp − θf(p)||2

) (9)

Energy smoothness term. The smoothness term provides
a measure of the difference between two neighbouring pix-
els p, q ∈ I with labels lp, lq ∈ L respectively. Let Ip and
Iq be the intensity values in the observed data of the pixels
p, q ∈ I respectively. Similarly, let θp and θq be the ini-
tial orientations for the two pixels recovered as explained in
Section 4.2. We define a measure of the observed smooth-
ness between pixels p and q as

∆p,q =
1 + (Ip − Iq)2

2− ||θp − θq||)2
(10)

In addition, we define a measure of smoothness for the
global minimization. Let If(p) and If(q) be the intensity
values under a labeling f . Similarly, let θf(p) and θf(q) be
the orientations under the same labeling. We define a mea-
sure of the smoothness between neighbouring pixels p, q un-
der a labeling f as

∆̂p,q =
1 + (If(p) − If(q))2

2− ||θf(p) − θf(q)||2
(11)

Using the smoothness measure defined for the observed
data and the smoothness measure defined for any given la-
beling we can finally define the energy smoothness term as
follows,

Esmooth(f) =
∑

{p,q}∈N

V{p,q}(f(p), f(q)) (12)



Esmooth(f) =
∑

{p,q}∈N

Kp,q ∗ ∆̂p,q (13)

where N is the set of neighbouring pixels, Kp,q = [e−
∆2

p,q

2∗σ2 ],
and σ controls the smoothness uncertainty. Intuitively, if
two neighbouring pixels p and q have similar intensity and
similar orientation in the observed data, then ∆p,q will be
small and thus there is a high propability of ∆̂p,q being
small. To summarize, the function E(f) penalizes heavily
for severed edges between neighbouring pixels with similar
intensity and orientation, and vice versa.

An advantage of the proposed orientation-based segmen-
tation is that by incorporating orientation information in the
optimization process it ensures that linear segments are not
severed, even in the case where the color difference between
neighbouring pixels is relatively big. By using the clas-
sified curve feature information to guide the segmentation
process we combine the fast computational times of graph-
cuts and the high-accuracy of the information derived using
the perceptual grouping to produce results with better de-
fined boundaries compared to traditional segmentation tech-
niques as demonstrated in Figure 4.

(a) (b) (c) (d)

Figure 4. Comparison between traditional intensity- and
orientation-based segmentation. (a) Original image. (b) Intensity-
based segmentation. (c) Orientation-based segmentation. (d)
Color-coded segmentation difference(red:common points,
green: only in intensity segmentation, blue: only in orientation
segmentation)

6. Road Network Extraction and Modeling
6.1. Road Centerline Extraction and Linearization

The extraction of the road centerlines is performed using
a set of gaussian-based filters. A bi-modal filter is employed
to detect parallel-lines and is defined as a mixture of gaus-
sian kernels given by,

Gb =
1√

2πσxσy

[e
−[

(x−w
2 )2r

σ2
x

+
y2

r
σ2

y
]
+ e

−[
(x+ w

2 )2r
σ2

x
+

y2
r

σ2
y

]
] (14)

where the (. . . )r subscript stands for a rotation operation
such that

(x− w

2
)r = (x− w

2
)cos(φ) + ysin(φ) (15)

yr = −(x− w

2
)sin(φ) + ycos(φ) (16)

where φ is the orientation of the filter and 0 ≤ φ ≤ π and
w is the distance between the peaks. The bi-modal filter is
shown in Figure 5(a).

(a) (b)

Figure 5. (a) The bi-modal filter Gb is applied to the classified
curve features. (b) Red arrows: filter orientation (at peaks). Black
arrows: actual pixel orientation.

Bi-modal filters of different orientations φ and widths w
are applied to the classified curve features computed pre-
viously as explained in Section 4. In order to overcome
problems arising from the coindicidental presence of two
curve pixels along the filters’ peaks, orientation informa-
tion is used to weigh the response. This ensures that the
maximum response only occurs when both pixels have the
same orientation and are aligned to the filter’s orientation.
Figure 5(b) demonstrates the application of a bi-modal filter
to a point O. The orientations θL and θR of the left and right
road side points pL and pR respectively are used to scale the
response. Thus, equation 14 becomes,

Gb =
1p

2πσxσy
[cos(θL)e

−[
(x−w

2 )2r
σ2

x
+

y2
r

σ2
y

]
+ cos(θR)e

−[
(x+ w

2 )2r
σ2

x
+

y2
r

σ2
y

]
]

(17)

In addition to the bi-modal filters, single mode gaussian
filters are applied to the segmented binary image contain-
ing the road candidates. This ensures that the area between
any parallel lines is indeed a part of the road and therefore
should appear in the result of the segmentation.

Single mode and bi-modal filters of different widths and
orientations are combined as Gt = Gb ∗Gs and are used for
the extraction of centerline information. A point along the
centerline of a road of orientation θR and width wR, will
have a maximum response to a filter with the same or sim-
ilar orientation and width. Thus, for each pixel we record
the filter parameters(orientation,width) for which it returns
a maximum response.

Finally, the centerline response magnitudes are used as
votes in an iterative Hough transform. This has the signifi-
cant advantage that no input parameters are required for the
Hough transform, such as number of peaks, minimum vote
thresholds, etc. therefore making the linearization process
entirely automatic. The result is a set of lines representing
the segments of the road network as shown in the example



of Figure 6. The majority of the centerlines are correctly
extracted automatically. However, some false positives still
exist.

(a) (b)

Figure 6. (a) The response magnitude map computed by the filters
is used for the voting of Hough transform. (b) The majority of
centerlines are successfully and automatically extracted.

6.2. Road Tracking

Using the automatically extracted width and orientation
information computed by the filters, a tracking algorithm
converts the linear segments into their equivalent polygonal
representations i.e. road segments. In some cases where
the road network is particularly complex, the automatically
extracted linear segments may contain false positives and
false negatives. For such cases, we employ an interactive
approach for the further refinement which can have the form
of several actions outlined below,

1. Adding a seed point. Once a seed point is added the
filters are applied to derive the width and orientation
information. The system then recursively performs a
local neighbourhood search to find a candidate pixel
that minimizes the function,

f(x, y) = argmin(wd∗D(x,y)+wθ∗O(x,y)+ww∗(W(x,y)))
(18)

where D(x,y) is the euclidian distance between the can-
didate and the seed point, O(x,y) is the orientation dif-
ference, W(x,y) is the width difference and wd, wθ, ws

are weights corresponding to each term, respectively.
This process is recursively repeated and each candidate
point which minimizes f(x, y) is added to the current
line until no more neighbouring points are found. The
weights used for the examples were defined as follows:
wθ = 0.4, wd = 0.3, ws = wm = 0.3.

2. Adding or editing a centerline. Once a centerline
is added the filters are applied at a fixed orientation
aligned to the specified centerline’s slope.

3. Merging of two centerlines. Given two centerlines a
Hermite spline is fit between the most appropriate end-
points resulting in a single merged centerline.

4. Deleting a centerline.

5. Smoothing. The centerline vector is converted to dense
points. A snake is then used to refine the spatial po-
sition of those points using the centerline magnitude
map(Figure 6(a)) as an external force.

6. Approximation/Point reduction. A centerline consist-
ing of dense points is approximated using Iterative
End-Point Fit thus reducing the number of points.

Finally, a set of polygonal boolean operations is ap-
plied to the road segments. This results in a polygonal
representation of the entire road network which allows for
the efficient and correct handling of overlaps due to junc-
tions/intersections, round-abouts, etc.

7. Experimental Results

Figure 7 shows the final extracted road network using an
airborne LiDAR image of an urban area in Baltimore. The
automatically extracted and interactively refined centerlines
are shown as vectors(yellow lines) overlaid on the original
image in Figure 7(a). The road segments which are tracked
using the width and orientation information computed by
the filters are shown in Figure 7(b). Figure 7(c) shows the
result of the boolean operations on the polygonal represen-
tation of the road segments. As it can be seen overlapping
areas e.g. at junctions are handled efficiently and correctly
and produce nicely looking intersections.

8. Conclusion

We have presented a vision-based road detection and ex-
traction system for the accurate and reliable delineation of
complex transportation networks from remote sensor data.
To our best knowledge, there is no work done in combining
the perceptual grouping theories and optimized segmenta-
tion techniques for the extraction of road features and road
map information. Our system is an integrated solution that
merges the strengths of perceptual grouping theory(gabor
filters, tensor voting) and segmentation(global optimization
by graph-cuts), under a unified framework to address the
challenging problem of automated feature detection, classi-
fication and extraction.

Firstly, we leveraged the local precision and the multi-
scale, multi-orientation capability of gabor filters, combined
with the global context of the tensor voting for the extrac-
tion and accurate classification of geospatial features. In
addition, a tensorial representation was employed for the
encoding which removed any data dependencies by elimi-
nating the need for hard thresholds.

Secondly, we have presented a novel orientation-based
segmentation using graph-cuts for segmenting road fea-
tures. A major advantage of this segmentation is that it
incorporates the orientation information of the classified



(a)

(b)
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Figure 7. The result of an 2Kx2K urban area. (a) Centerline vec-
tors overlaid on original image. (b) Tracked road segments using
the automatically extracted width and orientation. Note the over-
lap at junctions. (c) Road network using polygonal representation.
The overlaps are correctly handled by the boolean operations to
form properly looking intersections/junctions.

curve features to produce segmentations with better defined
boundaries.

Finally, a set of gaussian-based filters were developed for

the automatic detection of road centerlines and the extrac-
tion of width and orientation information. The linearized
centerlines were finally tracked into road segments and then
converted to their polygonal representations.
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