COMP 425/6341 Computer Vision - Charalambos Poullis
 

COURSE SCHEDULE

The table below outlines a tentative schedule for this course over a 13-week term. In conjunction to the lectures there will be a 2-hour weekly lab session intended to give practical demonstration of the computer vision principles presented in the lectures and to provide experience in using OpenCV for the development of computer vision components and systems.

Ackowledgements: The slides are a combination of multiple resources and materials generously made publicly available by L. Shapiro, J. Hays, S. Lazebnik, D. Forsyth, J. Ponce, J. Koenderink, S. Seitz, R. Szeliski, B. Freeman, M. Pollefeys, D. Lowe, K. Grauman, A. Efros, F. Durand, L. Fei-Fei, A. Torralba, R. Fergus, F-F. Li, A. Karpathy, J. Johnson. In particular the material is heavily based on Drs L. Shapiro's and J. Hays' slides.

2021 Winter Semester
Date Topics Reading Slides Comments
1 > Syllabus
Introduction to Computer Vision
Digitization (sampling, quantization), Images
Szeliski Ch. 1, 3.2, Forsyth/Ponce Ch. 4 pdf
pdf
pdf
Assignment 1 out
2 > Image Operations (filtering)
Edge detection
Szeliski Ch. 3.2, 3.4, 3.5, 4.2 pdf
pdf
Cipolla & Gee on edge detection
3 > Geometric transformations
Interest points
Szeliski Ch.4.1.1 pdf
pdf
Assignment 1 due
Assignment 2 out
Harris paper
4 > Feature Descriptors
Image Stitching I
Szeliski Ch.4.1.2-4.1.3
Szeliski Ch.6.1
pdf
pdf
SIFT paper
5 > Image Stitching II
Cameras
Szeliski Ch.6
Szeliski Ch.2
pdf
pdf
6 > Quiz #1 Assignment 2 due
7 > Multiple Views (stereo, epipolar geometry) Szeliski Ch. 9 pdf
pdf
Project out
8 > Multiple views (Structure from Motion, Multi-View Stereo ) Szeliski Ch. 7
Szeliski Ch. 8.4
pdf
pdf
9 > Motion and Optical Flow Szeliski Ch.14.1, 14.2 pdf
10 > Image Classification
Loss Function and Optimization
pdf
pdf
11 > Back-propagation and Neural Networks
Training Neural Networks
pdf
pdf
12 > Convolutional Neural Networks pdf
13 > Quiz #2